Contribution of the Cholinergic Innervation to Early Memory Development in the Neonate Para-Hippocampal System

Conference paper

Abstract

Newborns present impressive developmental changes during the first year in almost all domains marked by memory categorization and variability. We propose that one important actor of this developmental shift is the gradual influence of the cholinergic system in the cortico-hippocampal circuits. Based on neurological observations and developmental studies, we model how the neuromodulator acetylcholine could be gradually released in the hippocampal system from the fetal period till the first year to support the detection of novel signals and the encoding of memories. By doing so, we suggest that the cholinergic system realizes the functional reorganization of the cortico-hippocampal system as a working memory for novelty.

Keywords

Entorhinal Cortex Cholinergic System Synaptic Weight Cholinergic Activation Cholinergic Innervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank professor Ichiro Tsuda for his valuables comments and remarks.

References

  1. 1.
    J. Court, S. Lloyd, M. Johnson, M. Griffiths, N. Birdsall, M. Piggott, A. Oakley, P. Ince, E. Perry, and R. Perry, “Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging,” Developmental Brain Research, vol. 101, pp. 93–105, 1997.PubMedCrossRefGoogle Scholar
  2. 2.
    J. Lauder and U. Schambra, “Morphogenetic roles of acetylcholine,” Environmental Health Perspectives, vol. 107, pp. 65–69, 1999.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    L. Descarries, N. Mechawar, N. Aznavour, and K. Watkins, “Structural determinants of the roles of acetylcholine in cerebral cortex,” Progress in Brain Research, vol. 145, pp. 45–58, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    M. Hasselmo, “The role of acetylcholine in learning and memory,” Current Opinion in Neurobiology, vol. 16, pp. 710–715, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    M. Matsukawa, M. Ogawa, T. Nakadate, K. Maeshima, Y. Ichitani, N. Kawai, and N. Okado, “Serotonin and acetylcholine are crucial to maintain hippocampal synapses and memory acquisition in rats,” Neuroscience Letters, vol. 230, pp. 13–16, 1997.PubMedCrossRefGoogle Scholar
  6. 6.
    W. Meck, C. Williams, J. Cermak, and J. Blusztajn, “Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia,” Front. Integr. Neurosci., vol. 1, no. 7, pp. 1–11, 2008.Google Scholar
  7. 7.
    J. Dwyer, S. McQuown, and F. Leslie, “The dynamic effects of nicotine on the developing brain,” Pharmacology & Therapeutics, vol. 122, pp. 125–139, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    J. Court, E. Perry, M. Johnson, M. Piggott, J. Kerwin, R. Perry, and P. Ince, “Regional patterns of cholinergic and glutamate activity in the developing and aging human brain,” Developmental Brain Research, vol. 74, pp. 73–82, 1993.PubMedCrossRefGoogle Scholar
  9. 9.
    M. Hasselmo and C. Stern, “Mechanisms underlying working memory for novel information,” Trends in Cognitive Sciences, vol. 10, no. 11, pp. 487–493, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    P. Gold, “Acetylcholine modulation of neural systems involved in learning and memory,” Neurobiology of Learning and Memory, vol. 80, pp. 194–210, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    K. Doya, “Metalearning and neuromodulation,” Neural Networks, vol. 15, p. 495506, 2002.Google Scholar
  12. 12.
    M. Hasselmo and J. McGaughy, “High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation,” Progress in Brain Research, vol. 145, pp. 207–231, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    R. Knight, “Contribution of human hippocampal region to novelty detection,” Nature, vol. 383, pp. 256–259, 1996.PubMedCrossRefGoogle Scholar
  14. 14.
    R. Klink and A. Alonso, “Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer ii neurons,” J. Neurophysiol., vol. 77, pp. 1829–1843, 1997.PubMedGoogle Scholar
  15. 15.
    D. Kumaran and E. Maguire, “Novelty signals: a window into hippocampal information processing,” Trends in Cognitive Sciences, vol. 13, no. 2, pp. 47–54, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    K. Adolph and A. Joh, Multiple learning mechanisms in the development of action. New York: Oxford University Press, 2009.Google Scholar
  17. 17.
    L. Smith and L. Samuelson, “Perceiving and remembering: Category stability, variability and development,” In K. Lamberts & D. Shanks (Eds.), Knowledge, Concepts and Categories. Psychology Press, East Sussex, UK, pp. 161–195, 1997.Google Scholar
  18. 18.
    P. Quinn, A. Westerlund, and C. Nelson, “Neural markers of categorization in 6-month-old infants,” Psychological Science, vol. 17, pp. 59–66, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    N. Newcombe and J. Huttenlocher, “Development of spatial cognition,” Handbook of Child Psychology, vol. 5, no. 2, pp. 734–776, 2006.Google Scholar
  20. 20.
    C. Nelson, “The ontogeny of human memory: A cognitive neuroscience perspective,” Developmental Psychology, vol. 31, pp. 723–738, 1995.CrossRefGoogle Scholar
  21. 21.
    A. Yu and P. Dayan, “Acetylcholine in cortical inference,” Neural Networks, vol. 15, no. 4-6, pp. 719–730, 2002.PubMedCrossRefGoogle Scholar
  22. 22.
    J. Piaget, The construction of reality in the child. New York: Basic Books, 1954.CrossRefGoogle Scholar
  23. 23.
    K. Cuevas and M. Bell, “Eeg and ecg from 5 to 10 months of age: Developmental changes in baseline activation and cognitive processing during working memory task,” Int. J. of Psy., vol. 80, no. 2, pp. 119–128, 2011.Google Scholar
  24. 24.
    A. Diamond, “Development of the ability to use recall to guide action, as indicated by infants’ performance on a-not-b,” Child Development, vol. 74, pp. 24–40, 1985.Google Scholar
  25. 25.
    Y. Munakata, “Infant perseveration and implications for object permanence theories: A pdp model of the a-not-b task,” Developmental Science, vol. 1, no. 2, pp. 161–211, 1998.CrossRefGoogle Scholar
  26. 26.
    L. Smith and E. Thelen, “Development as a dynamic system,” Trends in Cognitive Sciences, vol. 7, no. 8, pp. 343–348, 2003.PubMedCrossRefGoogle Scholar
  27. 27.
    R. Klink and A. Alonso, “Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer ii neurons,” J. Neurophysiol., vol. 77, pp. 1813–1828, 1997.PubMedGoogle Scholar
  28. 28.
    E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural Networks, vol. 14, pp. 1569– 1572, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    E. Izhikevich, “Polychronization: Computation with spikes,” Neural Computation, vol. 18, pp. 245–282, 2006.PubMedCrossRefGoogle Scholar
  30. 30.
    D. Colliaux, C. Molter, and Y. Yamaguchi, “Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a milnor attractor,” Cogn. Neurodyn., vol. 3, pp. 141–151, 2009.PubMedCentralPubMedGoogle Scholar
  31. 31.
    M. Hasselmo, “Neuromodulation and cortical function: modeling the physiological basis of behavior,” Current Opinion in Neurobiology, vol. 67, pp. 1–27, 1995.Google Scholar
  32. 32.
    J. Court, C. Martin-Ruiz, A. Graham, and E. Perry, “Nicotinic receptors in human brain: topography and pathology,” Journal of Chemical Neuroanatomy, vol. 20, pp. 281–298, 2000.PubMedCrossRefGoogle Scholar
  33. 33.
    G. Tononi, O. Sporns, and G. Edelman, “A measure for brain complexity: Relating functional segregation and integration in the nervous system,” Proc. Natl. Acad. Sci., vol. 91, pp. 5033–5037, 1994.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    W. Meck, R. Smith, and C. Williams, “Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory,” Dev. Psychobiol., vol. 21, pp. 339–353, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    S. Ikegami, “Behavioral impairment in radial-arm maze learning and acetylcholine content of the hippocampus and cerebral cortex in aged mice,” Behavioral and Brain Research, vol. 65, pp. 103–111, 1994.CrossRefGoogle Scholar
  36. 36.
    M. Sarter and V. Parikh, “Choline transporters, cholinergic transmission and cognition,” Nat. Rev. Neurosci., vol. 6, pp. 48–56, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    A. Diamond and P. Goldman-Rakic, “Comparison of human infants and rhesus monkeys on piaget’s a-not-b task: Evidence for dependence on dorsolateral prefrontal cortex,” Experimental Brain Research, vol. 74, pp. 24–40, 1989.PubMedCrossRefGoogle Scholar
  38. 38.
    S. Dehaene and J. Changeux, “A simple model of prefrontal cortex function in delayed response tasks,” Journal of Cognitive Neuroscience, vol. 1, pp. 244–261, 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    S. Marcovitch and P. Zelazo, “A hierarchical competing systems model of the emergence and early development of executive function,” Developmental Science, vol. 12, no. 1, pp. 1–25, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    A. Diamond, “A model system for studying the role of dopamine in the prefrontal cortex during early development in humans: Early and continuously treated phenylketonuria,” Handbook of Developmental Cognitive Neuroscience. Edited by Charles A. Nelson and Monica Luciana, pp. 433–472, 1998.Google Scholar
  41. 41.
    L. Smith, E. Thelen, R. Titzer, and D. McLin, “Knowing in the context of acting: The task dynamics of the a-not-b error,” Psychological Review, vol. 106, pp. 235–260, 1999.PubMedCrossRefGoogle Scholar
  42. 42.
    G. Schöner and E. Dineva, “Dynamic instabilities as mechanisms for emergence,” Developmental Science, vol. 10, no. 1, pp. 69–74, 2007.PubMedCrossRefGoogle Scholar
  43. 43.
    L. Gershkoff-Stowe and E. Thelen, “U-shaped changes in behavior: A dynamic systems perspective,” Journal of Cognition and Development, vol. 1, no. 5, pp. 11–36, 2004.Google Scholar
  44. 44.
    A. Peinado, “Traveling slow waves of neural activity: a novel form of network activity in developing neocortex,” J. Neurosci., vol. 20, no. RC54, pp. 1–6, 2000.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire ETIS, UMR 8051Universite de Cergy-PontoiseCergy-PontoiseFrance
  2. 2.Laboratory for Intelligent Systems and Informatics, Department of Mechano-InformaticsUniversity of TokyoTokyoJapan

Personalised recommendations