Advertisement

Using Systems Approaches to Analyze Metabolic Networks Involved in Storage Reserve Synthesis in Developing Seeds

  • Christian Krach
  • Eva Grafahrend-Belau
  • Hart Poskar
  • Kai Schallau
  • Falk Schreiber
  • Björn H. JunkerEmail author
Chapter

Abstract

In contrast to transcripts, proteins, and metabolites, intracellular metabolic fluxes cannot be measured directly, but rather rely on prediction via computational simulation or on indirect measurements. In this chapter, we describe different approaches to quantify and simulate fluxes in plant metabolic pathways. Metabolic behavior can be simulated with models ranging from basic stoichiometry to fully detailed kinetic models, and fluxes can be quantified via a combination of computer modeling and stable isotope labeling experiments. We especially emphasize the usefulness of these approaches for improving the understanding of storage compound synthesis in developing crop seeds.

Keywords

Flux balance analysis (FFA) Kinetic modeling Metabolic flux analysis (MBA) Metabolism Steady state 

References

  1. Allen DK, Ohlrogge JB, Shachar-Hill Y (2009) The role of light in soybean seed filling metabolism. Plant J 58:220–234PubMedCrossRefGoogle Scholar
  2. Allen DK, Ratcliffe RG (2009) Quantification of isotope label. In: Schwender J (ed) Plant metabolic networks. Springer, New York, pp 105–150CrossRefGoogle Scholar
  3. Alonso AP, Vigeolas H, Raymond P, Rolin D, Dieuaide-Noubhani M (2005) A new substrate cycle in plants. Evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [13C] glucose and [14C] glucose. Plant Physiol 138:2220–2232Google Scholar
  4. Alonso AP, Goffman F, Ohlrogge JB, Shachar-Hill Y (2007a) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52:296–308Google Scholar
  5. Alonso AP, Raymond P, Rolin D, Dieuaide-Noubhani M (2007b) Substrate cycles in the central metabolism of maize root tips under hypoxia. Phytochemistry 68:2222–2231CrossRefGoogle Scholar
  6. Alonso AP, Dale VL, Shachar-Hill Y (2010) Understanding fatty acid synthesis in developing maize embryos using metabolic flux analysis. Metab Eng 12:488–497PubMedCrossRefGoogle Scholar
  7. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86PubMedCrossRefGoogle Scholar
  8. Assmus H (2005) Modelling carbohydrate metabolism in potato tuber cells. Thesis, Oxford Brookes UniversityGoogle Scholar
  9. Beckles DM, Smith AM, ap Rees T (2001) A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol 125:818–827PubMedCrossRefGoogle Scholar
  10. Blum JJ, Stein RB (1982) On the analysis of metabolic networks. In: Goldberger RF (ed) Biological regulation and development. Plenum, New York, pp 99–124Google Scholar
  11. Borger S, Uhlendorf J, Helbig A, Liebermeister W (2007) Integration of enzyme kinetic data from various sources. In Silico Biol 7:S73--S79Google Scholar
  12. Curien G, Ravanel S, Dumas R (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur J Biochem 270:4615–4627PubMedCrossRefGoogle Scholar
  13. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589CrossRefGoogle Scholar
  14. Emes MJ, Bowsher CG, Hedley C, Burrell MM, Scrase-Field ES, Tetlow IJ (2003) Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot 54:569–575PubMedCrossRefGoogle Scholar
  15. Geigenberger P (2003) Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 54:457–465PubMedCrossRefGoogle Scholar
  16. Gibbs J, Morrell S, Valdez A, Setter TL, Greenway H (2000) Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J Exp Bot 51:785–796PubMedCrossRefGoogle Scholar
  17. Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009b) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598CrossRefGoogle Scholar
  18. Junker BH (2005) Sucrose breakdown in the potato tuber. Thesis. http://opus.kobv.de/ubp/volltexte/2005/176/
  19. Junker BH, Lonien J, Heady LE, Rogers A, Schwender J (2007) Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Phytochemistry 68:2232–2242Google Scholar
  20. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496Google Scholar
  21. Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6PubMedCrossRefGoogle Scholar
  22. Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinformatics 7:140–150PubMedCrossRefGoogle Scholar
  23. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C. 2010a. BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92CrossRefGoogle Scholar
  24. Libourel IGL, Shachar-Hill Y (2008) Metabolic flux analysis in plants: from intelligent design to rational engineering. Annu Rev Plant Biol 59:625–650PubMedCrossRefGoogle Scholar
  25. Llaneras F, Picó J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105:1–11PubMedCrossRefGoogle Scholar
  26. Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer AG (2010) Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol 153:260–273Google Scholar
  27. Olsen LF, Hauser MJB, Kummer U (2003) Mechanism of protection of peroxidase activity by oscillatory dynamics. Eur J Biochem 270:2796–2804PubMedCrossRefGoogle Scholar
  28. Poolman MG, Ölçer H, Lloyd JC, Raines CA, Fell DA (2001) Computer modelling and experimental evidence for two steady states in the photosynthetic Calvin cycle. Eur J Biochem 268:2810–2816PubMedCrossRefGoogle Scholar
  29. Poolman MG, Fell DA, Raines CA (2003) Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur J Biochem 270:430–439PubMedCrossRefGoogle Scholar
  30. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581PubMedCrossRefGoogle Scholar
  31. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511PubMedCrossRefGoogle Scholar
  32. Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374PubMedCrossRefGoogle Scholar
  33. Rios-Estepa R, Turner GW, Lee JM, Croteau RB, Lange BM (2008) A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc Natl Acad Sci U S A 105:2818–2823PubMedCrossRefGoogle Scholar
  34. Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437–445PubMedCrossRefGoogle Scholar
  35. Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55:1351–1359PubMedCrossRefGoogle Scholar
  36. Rolletschek H, Koch K, Wobus U, Borisjuk L (2005) Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Plant J 42:69–83PubMedCrossRefGoogle Scholar
  37. Schallau K, Junker BH (2010) Simulating plant metabolic pathways with enzyme-kinetic models. Plant Physiol 152:1763–1771PubMedCrossRefGoogle Scholar
  38. Schilling CH, Letscher D, Palsson BØ. 2000a. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248CrossRefGoogle Scholar
  39. Schilling CH, Schuster S, Palsson BØ, Heinrich R. 2000b. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15:296–303CrossRefGoogle Scholar
  40. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182CrossRefGoogle Scholar
  41. Schuster S, Hilgetag C, Woods JH, Fell DA (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 45:153–181PubMedCrossRefGoogle Scholar
  42. Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) RubisCO without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedCrossRefGoogle Scholar
  43. Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047PubMedCrossRefGoogle Scholar
  44. Snoep JL, Olivier BG (2002) Java Web Simulation (JWS); a web based database of kinetic models. Mol Biol Reports 29:259–263CrossRefGoogle Scholar
  45. Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057PubMedCrossRefGoogle Scholar
  46. Steuer R, Nesi AN, Fernie AR, Gross T, Blasius B, Selbig J (2007) From structure to dynamics of metabolic pathways: application to the plant mitochondrial TCA cycle. Bioinformatics 23:1378–1385PubMedCrossRefGoogle Scholar
  47. Stitt M (1990) Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu Rev Plant Physiol Plant Mol Biol 41:153–185CrossRefGoogle Scholar
  48. Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a cycle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470PubMedCrossRefGoogle Scholar
  49. Thomas S, Mooney PJ, Burrell MM and Fell DA (1997) Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J 322:119–127PubMedGoogle Scholar
  50. Thorbjørnsen T, Villand P, Denyer K, Olsen OA, Smith AM (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10:243–250CrossRefGoogle Scholar
  51. Uys L, Botha FC, Hofmeyr JHS, Rohwer JM (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–2392PubMedCrossRefGoogle Scholar
  52. van Dongen JT, Roeb GW, Dautzenberg M, Froehlich A, Vigeolas H, Minchin PE, Geigenberger P (2004) Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds. Plant Physiol 135:1809–1821PubMedCrossRefGoogle Scholar
  53. Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21:455–467PubMedCrossRefGoogle Scholar
  54. Wiechert W, de Graaf AA (1996) In vivo stationary flux analysis by 13C labelling experiments. Adv Biochem Eng Biotechnol 54:109–154PubMedGoogle Scholar
  55. Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55:101–117PubMedCrossRefGoogle Scholar
  56. Williams TCR, Poolman MG, Howden AJM, Schwarzlander M, Fell DA, Ratcliffe RG, Sweetlove LJ (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154:311–323PubMedCrossRefGoogle Scholar
  57. Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526PubMedCrossRefGoogle Scholar
  58. Zupke C, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10:489–498CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Christian Krach
    • 1
  • Eva Grafahrend-Belau
    • 1
  • Hart Poskar
    • 1
  • Kai Schallau
    • 1
  • Falk Schreiber
    • 2
  • Björn H. Junker
    • 1
    Email author
  1. 1.Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Martin Luther University Halle-WittenbergHalleGermany

Personalised recommendations