Advertisement

Plant Metabolic Pathways: Databases and Pipeline for Stoichiometric Analysis

  • Eva Grafahrend-Belau
  • Björn H. Junker
  • Falk SchreiberEmail author
Chapter

Abstract

Mathematical modeling of plant metabolism offers new approaches to improve the understanding of complex biological processes. In this chapter an overview of resources and tools available for the reconstruction of stoichiometric models and their constraint-based analysis is given, focusing on plant metabolic pathways. To facilitate and support the modeling of metabolism, a pipeline for the constraint-based analysis of crop plant metabolic models is described and the proposed framework is applied in a case study of storage metabolism in developing barley seeds.

Keywords

Constraint-based analysis (CBA) CBA software Crop plant metabolism Flux balance analysis Modeling pipeline Plant metabolic pathway databases 

References

  1. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucl Acids Res 34:D504–D506PubMedCrossRefGoogle Scholar
  2. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738PubMedCrossRefGoogle Scholar
  3. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan IS, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledge-base and its supplement TrEMBL in 2003. Nucl Acids Res 31:365–370PubMedCrossRefGoogle Scholar
  4. Cakir T, Alsan S, Saybas¸ili H, Akin A, Ulgen KO (2007) Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model 4:e48Google Scholar
  5. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Paley S, Popescu L, Pujar A, Shearer AG, Zhang P, Karp PD (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucl Acids Res 38:D473–D479PubMedCrossRefGoogle Scholar
  6. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucl Acids Res 37:D588–D592PubMedCrossRefGoogle Scholar
  7. David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270:4243–4253PubMedCrossRefGoogle Scholar
  8. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589CrossRefGoogle Scholar
  9. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782PubMedCrossRefGoogle Scholar
  10. Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533PubMedCrossRefGoogle Scholar
  11. Edwards JS, Ramakrishna R, Schilling CH, Palsson BØ (1999) Metabolic flux balance analysis. In: Lee SSY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13–57Google Scholar
  12. Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130PubMedCrossRefGoogle Scholar
  13. Famili I, Forster J, Nielsen J, Palsson BØ (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:13134–13139PubMedCrossRefGoogle Scholar
  14. Feist AM, Palsson BØ (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667PubMedCrossRefGoogle Scholar
  15. Fèvre FL, Smidtas S, Combe C, Durot M, d’Alché-Buc F, Schachter V (2009) CycSim–an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25:1987–1988PubMedCrossRefGoogle Scholar
  16. Förster J, Famili I, Palsson BØ, Nielsen J (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 7:193–202PubMedCrossRefGoogle Scholar
  17. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res 31:3784–3788PubMedCrossRefGoogle Scholar
  18. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI BioSystems database. Nucl Acids Res 38:D492–D496PubMedCrossRefGoogle Scholar
  19. Giersch C (2000) Mathematical modelling of metabolism. Curr Opin Plant Biol 3:249–253PubMedGoogle Scholar
  20. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M (2002) Ligand: database of chemical compounds and reactions in biological pathways. Nucl Acids Res 30:402–404PubMedCrossRefGoogle Scholar
  21. Grafahrend-Belau E, Weise S, Koschützki D, Scholz U, Junker BH, Schreiber F (2008) MetaCrop: a detailed database of crop plant metabolism. Nucl Acids Res 36:D954–D958PubMedCrossRefGoogle Scholar
  22. Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009a) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25:2755–2757CrossRefGoogle Scholar
  23. Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009b) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598CrossRefGoogle Scholar
  24. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109PubMedCrossRefGoogle Scholar
  25. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  26. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucl Acids Res 38:D355–D360PubMedCrossRefGoogle Scholar
  27. Karp PD (1998a) Metabolic databases. Trends Biochem Sci. 23:114–116.Google Scholar
  28. Karp PD (1998b) What we do not know about sequence analysis and sequence databases. Bioinformatics 14:753–754.Google Scholar
  29. Karp PD, Krummenacker M, Paley S, Wagg J (1999) Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol 17:275–281PubMedCrossRefGoogle Scholar
  30. Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18;S225–S232PubMedCrossRefGoogle Scholar
  31. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucl Acids Res 33:6083–6089PubMedCrossRefGoogle Scholar
  32. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496PubMedCrossRefGoogle Scholar
  33. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2PubMedCrossRefGoogle Scholar
  34. Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinformatics 7:140–150PubMedCrossRefGoogle Scholar
  35. Lee SY, Lee DY, Hong SH, Kim TY, Yun H, Oh YG, Park S (2003) MetaFluxNet, a program package for metabolic pathway construction and analysis and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform 14:23–33PubMedGoogle Scholar
  36. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92PubMedCrossRefGoogle Scholar
  37. Masoudi-Nejad A, Goto S, Jauregui R, Ito M, Kawashima S, Moriya Y, Endo TR, Kanehisa M (2007a) EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144:857–866CrossRefGoogle Scholar
  38. Masoudi-Nejad A, Goto S, Endo TR, Kanehisa M (2007b) KEGG bioinformatics resource for plant genomics research. Methods Mol Biol 406:437–458Google Scholar
  39. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucl Acids Res 37:D619–622PubMedCrossRefGoogle Scholar
  40. Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89PubMedCrossRefGoogle Scholar
  41. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460PubMedCrossRefGoogle Scholar
  42. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248PubMedCrossRefGoogle Scholar
  43. Pico AR, Kelder T, Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6:e184Google Scholar
  44. Poolman MG, Assmus HE, Fell DA (2004) Applications of metabolic modelling to plant metabolism. J Exp Bot 55:1177–1186PubMedCrossRefGoogle Scholar
  45. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581PubMedCrossRefGoogle Scholar
  46. Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185(9):2692–2699Google Scholar
  47. Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374PubMedCrossRefGoogle Scholar
  48. Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45PubMedCrossRefGoogle Scholar
  49. Rojas I, Golebiewski M, Kania R, Krebs O, Mir S, Weidemann A, Wittig U (2007) Storing and annotating of kinetic data. In Silico Biol 7:S37–S44Google Scholar
  50. Sakurai N, Ara T, Ogata Y, Sano R, Ohno T, Sugiyama K, Hiruta A, Yamazaki K, Yano K, Aoki K, Aharoni A, Hamada K, Yokoyama K, Kawamura S, Otsuka H, Tokimatsu T, Kanehisa M, Suzuki H, Saito K, Shibata D (2011) KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucl Acids Res 39:D677–D684PubMedCrossRefGoogle Scholar
  51. Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BØ (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593PubMedCrossRefGoogle Scholar
  52. Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26PubMedCrossRefGoogle Scholar
  53. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498–2504Google Scholar
  54. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21:1617–1626PubMedCrossRefGoogle Scholar
  55. Telgkamp M, Koschützki D, Schwöbbermeyer H, Schreiber F (2007) Community-based linking of biological network resources: databases, formats and tools. J Integr Bioinform 4:71Google Scholar
  56. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  57. Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol. 138:1289–300PubMedCrossRefGoogle Scholar
  58. Tsesmetzis N, Couchman M, Higgins J, Smith A, Doonan JH, Seifert GJ, Schmidt EE, Vastrik I, Birney E, Wu G, D’Eustachio P, Stein LD, Morris RJ, Bevan MW, Walsh SV (2008) Arabidopsis reactome: a foundation knowledgebase for plant systems biology. Plant Cell 20:1426–1436PubMedCrossRefGoogle Scholar
  59. Urbanczik R (2006) SNA–a toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinformatics 7:129PubMedCrossRefGoogle Scholar
  60. Van Dien SJ, Lidstrom ME (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol Bioeng 78:296–312PubMedCrossRefGoogle Scholar
  61. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998CrossRefGoogle Scholar
  62. Varma A, Boesch BW, Palsson BØ (1993a) Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 42:59–73CrossRefGoogle Scholar
  63. Varma A, Boesch BW, Palsson BØ (1993b) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473Google Scholar
  64. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao Z, Zhang J, Bryant SH (2010) An overview of the PubChem BioAssay resource. Nucl Acids Res 38:D255–D266PubMedCrossRefGoogle Scholar
  65. Wittig U, De Beuckelaer A (2001) Analysis and comparison of metabolic pathway databases.Brief Bioinform 2:126–142PubMedCrossRefGoogle Scholar
  66. Wright J, Wagner A (2008) The systems biology research tool: evolvable open-source software. BMC Syst Biol 2:55PubMedCrossRefGoogle Scholar
  67. Yang Y, Engin L, Wurtele ES, Cruz-Neira C, Dickerson JA (2005) Integration of metabolic networks and gene expression in virtual reality. Bioinformatics 21:3645–3650PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Eva Grafahrend-Belau
    • 2
  • Björn H. Junker
    • 2
  • Falk Schreiber
    • 1
    • 2
    Email author
  1. 1.Clayton School of Information TechnologyMonash UniversityVictoriaAustralia
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations