Agronomic and Quality Attributes of Worldwide Primitive Barley Subspecies

  • Abderrazek Jilal
  • Stefania Grando
  • Robert James Henry
  • Nicole Rice
  • Salvatore Ceccarelli
Conference paper


Old barley germplasm from the primary gene pool (landraces and wild relative) provides a broad representation of natural variation not only in agronomically important traits but also in nutraceuticals. Five hundred and twenty barley landraces including 36 wild barley relatives belonging to 33 countries were subject to agronomic and quality screening. The mean values for the four implemented environments (two sites by 2 years) revealed that the subspecies H. spontaneum was a great source of important traits (spike length, plant height, protein content and β-glucan content) comparing to H. vulgare (the top in grain yield and heading date) and H. distichon (first in TKW and particle size index). The blue aleurone colour was dominated for the most studied accessions. The ANOVA between subspecies associated with canonical variate analysis and hierarchical clustering confirms the finding to be used in barley breeding through incorporation of the candidate gene into the commercial varieties.


Barley Germplasm H. spontaneum Agronomic and quality attributes 


  1. Al-Saghir, M. G., Malkawi, H. I., & El-Oqlah, A. (2009). Morphological diversity in Hordeum spontaneum C. Koch of Northern Jordan (Ajloun Area). Middle East Journal of Scientific Research, 4(1), 24–27.Google Scholar
  2. Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., & Ceccarelli, S. (2003). QTL for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ 9H. spontaneum 41–1. Theoretical and Applied Genetics, 107, 1215–1225.PubMedCrossRefGoogle Scholar
  3. Ceccarelli, S. (1996). Adaptation to low/high input cultivation. Euphytica, 92, 203–214.CrossRefGoogle Scholar
  4. Corke, H., & Atsmon, D. (1990). Endosperm protein accumulation in wild and cultivated barley and their cross grown in spike culture. Euphytica, 48, 225–231.CrossRefGoogle Scholar
  5. Friedman, M., & Atsmon, D. (1988). Comparison of grain composition and nutritional quality in wild barley (Hordeum spontaneum) and in a standard cultivar. Journal of Agricultural and Food Chemistry, 36, 1167–1172.CrossRefGoogle Scholar
  6. Harlan, J. R. (1992). Crops and man. Madison: American Society of Agronomy.Google Scholar
  7. Harlan, J. R., & Zohary, D. (1966). Distribution of wild wheats and barley. Science, 153, 1074–1080.PubMedCrossRefGoogle Scholar
  8. Jaradat, A. A. (1991). Grain protein variability among populations of wild barley (Hordeum spontaneum C. Koch) from Jordan. Theoretical and Applied Genetics, 83, 164–168.CrossRefGoogle Scholar
  9. Korff, V. M., Wang, H., Leon, J., & Pillen, K. (2004) Detection of QTL for agronomic traits in an advanced backcross population with introgression from wild barley (Hordeum vulgare ssp. spontaneum). In: Genetic variation for plant breeding, Proceeding of the 17th EUCARPIA General Congress, 8–11 September, 2004, Tulln (pp. 207–211). Vienna: BOKU – University of Natural Resources and Life Sciences.Google Scholar
  10. Leon, J., Silz, S., & Harloff, H. J. (2000). β-D-glucan content during grain filling in spring Barley and its wild progenitor H. vulgare ssp. Spontaneum. Journal of Agronomy and Crop Science, 185, 1–8.CrossRefGoogle Scholar
  11. Li, J. Z., Huang, X. O., Heinrichs, F., & Ganal, M. W. (2005). Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theoretical and Applied Genetics, 110, 356–363.PubMedCrossRefGoogle Scholar
  12. Lu, Z., Neumann, P. M., Tamar, K., & Nevo E (1999) Physiological characterization of drought tolerance in wild barley (Hordeum spontaneum) from the Judean Desert.
  13. Narasimhalu, P., Kong, D., Choo, T. M., Ferguson, T., Therrien, M. C., Ho, K. M., May, K. W., & Jiu, P. (1994). Effects of environment and cultivar on total mixed-linkage,6-glucan content in Eastern and Western Canadian barleys (Hordeum Vulgare L.). Canadian Journal of Plant Science, 75, 371–376.CrossRefGoogle Scholar
  14. Nevo, E., Atsmon, D., & Beiles, A. (1985). Protein resources in wild barley, Hordeum spontaneum, in Israel: Predictive method by ecology and allozyme markers. Plant Systematics and Evolution, 150, 205–222.CrossRefGoogle Scholar
  15. Newman, R. K., & Newman, C. W. (2008). Barley for food and health, science, technology and products. Hoboken: Wiley. ISBN 978-0-470-10249-7.CrossRefGoogle Scholar
  16. Perrier, X., Flori, A., & Bonnot, F. (2003). Data analysis methods. In P. Hamon, M. Seguin, X. Perrier, & J. C. Glaszmann (Eds.), Genetic diversity of cultivated tropical plants (pp. 43–76). Enfield: Science Publishers.Google Scholar
  17. Pillen, K., Zacharias, A., & Leon, J. (2003). Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 107, 340–352.PubMedCrossRefGoogle Scholar
  18. Volis, S., Mendlinger, S., & Ward, D. (2002). Adaptive traits of wild barley of Mediterranean and desert origin. Oecologia, 133, 131–138.CrossRefGoogle Scholar
  19. Von Bothmer, R., Sato, K., Knüpffer, H., & van Hintum, T. (2003). Diversity in barley – Hordeum vulgare. Developments in Plant Genetics and Breeding, 7, 280.Google Scholar
  20. VSN International Ltd. (2003). GenStat Release 7.1. Rothamsted: Lawes Agricultural Trust. ISBN 1-904375-11-1.Google Scholar
  21. Williams, P., & Norris, K. (2001). Near infrared technology in the agricultural and food industries. St. Paul: American Association of Cereal Chemists.Google Scholar
  22. Williams, P. C., Jaby El-Haramein. F., Nakkoul, H., & Rihawi, S. (1988). Crop quality evaluation, methods and guidelines (Technical Manual No. 14). Aleppo: ICARDA.Google Scholar

Copyright information

© Zhejiang University Press and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Abderrazek Jilal
    • 1
  • Stefania Grando
    • 1
  • Robert James Henry
    • 2
    • 3
  • Nicole Rice
    • 2
  • Salvatore Ceccarelli
    • 1
  1. 1.Grain Foods CRCInternational Centre for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria
  2. 2.Grain Foods CRCCentre for Plant Conservation Genetics (CPCG), Southern Cross UniversityLismoreAustralia
  3. 3.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneAustralia

Personalised recommendations