Genetic Diversity in Latvian Spring Barley Association Mapping Population

  • Ieva Mezaka
  • Linda Legzdina
  • Robbie Waugh
  • Timothy J. Close
  • Nils Rostoks
Conference paper


Certified organic crop area is continuously increasing in European Union and in Latvia (Eurostat data), despite somewhat lower yield and higher potential for disease damage in organic farming. It is increasingly recognized that breeding varieties for organic farming requires focus on specific traits that may be less important under conventional agriculture. Molecular markers are becoming essential tools for plant breeding allowing reducing time and cost of development of new varieties by early selection of progeny with desired traits. However, there is lack of information on molecular markers for traits that may be important for organic farming, such as plant morphological traits ensuring competitive ability with weeds, yield and yield stability under organic growing conditions, nutrient use efficiency, and resistance to diseases. We have selected 145 Latvian varieties and breeding lines along with 46 foreign accessions for association mapping panel and genotyped those with 1,536 single-nucleotide polymorphism (SNP) markers using Illumina GoldenGate platform and barley oligo pooled array 1. In parallel to genotyping, 154 of the 191 spring barley genotypes contrasting for traits that are important for organic farming are currently in field trials under conventional and organic management. The success of association mapping in structured natural populations depends on the extent of linkage disequilibrium (LD) and ability to control for the population structure during statistical analyses. Preliminary results based on principal component and phylogenetic analyses of 1,003 SNP markers with average polymorphism information content (PIC) of 0.394 suggested that the set of germplasm is relatively uniform with the exception of a few six-row varieties. STRUCTURE analysis based on the ΔK value suggested that the population could be partitioned into two clusters. The mean LD (r 2 > 0.1) extended over 10-cM distance suggesting that the available marker density may be sufficient for association mapping. Plots of pairwise LD along the chromosomes indicated uneven distribution of LD blocks in barley genome.


Barley Single-nucleotide polymorphism Linkage disequilibrium Association mapping Population structure Genetic diversity 



The study is funded by the European Social Fund cofinanced project 2009/0218/1DP/ and the Latvian Council of Science grant Z-956-090.


  1. Ardlie, K. G., Kruglyak, L., & Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews. Genetics, 3, 299–309.PubMedCrossRefGoogle Scholar
  2. Ball, R. D. (2007). Statistical analysis and experimental design. In N. C. Oraguzie, E. H. A. Rikkerink, S. Gardiner, & H. N. De Silva (Eds.), Association mapping in plants (pp. 133–196). New York: Springer.CrossRefGoogle Scholar
  3. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.PubMedCrossRefGoogle Scholar
  4. Close, T., Bhat, P., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J., Wanamaker, S., Bozdag, S., Roose, M., Moscou, M., Chao, S., Varshney, R., Szucs, P., Sato, K., Hayes, P., Matthews, D., Kleinhofs, A., Muehlbauer, G., DeYoung, J., Marshall, D., Madishetty, K., Fenton, R., Condamine, P., Graner, A., & Waugh, R. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.PubMedCrossRefGoogle Scholar
  5. Cockram, J., White, J., Zuluaga, D. L., Smith, D., Comadran, J., Macaulay, M., Luo, Z., Kearsey, M. J., Werner, P., Harrap, D., Tapsell, C., Liu, H., Hedley, P. E., Stein, N., Schulte, D., Steuernagel, B., Marshall, D. F., Thomas, W. T., Ramsay, L., Mackay, I., Balding, D. J., Consortium, T. A., Waugh, R., & O’Sullivan, D. M. (2010). Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 107, 21611–21616.PubMedCrossRefGoogle Scholar
  6. Comadran, J., Ramsay, L., MacKenzie, K., Hayes, P., Close, T. J., Muehlbauer, G., Stein, N., & Waugh, R. (2011). Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and Applied Genetics, 122, 523–531.PubMedCrossRefGoogle Scholar
  7. Cuesta-Marcos, A., Szucs, P., Close, T., Filichkin, T., Muehlbauer, G., Smith, K., & Hayes, P. (2010). Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics, 11, 707.PubMedCrossRefGoogle Scholar
  8. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14, 2611–2620.PubMedCrossRefGoogle Scholar
  9. Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.PubMedGoogle Scholar
  10. Feuillet, C., Langridge, P., & Waugh, R. (2008). Cereal breeding takes a walk on the wild side. Trends in Genetics, 24, 24–32.PubMedCrossRefGoogle Scholar
  11. Gaike, M. (1992). Spring barley. In I. Holms (Ed.), Field crop breeding in Latvia (in Latvian) (pp. 53–63). Riga: Avots.Google Scholar
  12. Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1–13.CrossRefGoogle Scholar
  13. Hamblin, M. T., Close, T. J., Bhat, P. R., Chao, S., Kling, J. G., Abraham, K. J., Blake, T., Brooks, W. S., Cooper, B., Griffey, C. A., Hayes, P. M., Hole, D. J., Horsley, R. D., Obert, D. E., Smith, K. P., Ullrich, S. E., Muehlbauer, G. J., & Jannink, J. L. (2010). Population structure and linkage disequilibrium in U.S. barley germplasm: implications for association mapping. Crop Science, 50, 556–566.CrossRefGoogle Scholar
  14. Jin, L., Lu, Y., Xiao, P., Sun, M., Corke, H., & Bao, J. (2010). Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 121, 475–487.PubMedCrossRefGoogle Scholar
  15. Kokina, A., & Rostoks, N. (2008). Genome-wide and Mla locus-specific characterization of Latvian barley varieties. Proceedings of the Latvian Academy of Sciences, 62, 103–109.Google Scholar
  16. Kota, R., Varshney, R., Prasad, M., Zhang, H., Stein, N., & Graner, A. (2008). EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Functional & Integrative Genomics, 8, 223–233.CrossRefGoogle Scholar
  17. Kruglyak, L. (1997). The use of a genetic map of biallelic markers in linkage studies. Nature Genetics, 17, 21–24.PubMedCrossRefGoogle Scholar
  18. Kruglyak, L. (2005). Power tools for human genetics. Nature Genetics, 37, 1299–1300.PubMedCrossRefGoogle Scholar
  19. Le Couviour, F., Faure, S., Poupard, B., Flodrops, Y., Dubreuil, P., & Praud, S. (2011). Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theoretical and Applied Genetics, 123, 715–727.PubMedCrossRefGoogle Scholar
  20. Lorenz, A. J., Hamblin, M. T., & Jannink, J. L. (2010). Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS One, 5, e14079.PubMedCrossRefGoogle Scholar
  21. Mezaka, I., Bleidere, M., Legzdina, L., & Rostoks, N. (in press). Whole genome association mapping identifies naked grain locus NUD as determinant of β-glucan content in barley. Zemdirbyste – Agriculture.Google Scholar
  22. Neumann, K., Kobiljski, B., Denčić, S., Varshney, R., & Börner, A. (2011). Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Molecular Breeding, 27, 37–58.CrossRefGoogle Scholar
  23. Newell, M. A., Cook, D., Tinker, N. A., & Jannink, J. L. (2011). Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theoretical and Applied Genetics, 122, 623.PubMedCrossRefGoogle Scholar
  24. Pourkheirandish, M., & Komatsuda, T. (2007). The importance of barley genetics and domestication in a global perspective. Annals of Botany London, 100, 999–1008.CrossRefGoogle Scholar
  25. Pritchard, J. K., Stephens, M., Rosenberg, N. A., & Donnelly, P. (2000). Association mapping in structured populations. The American Journal of Human Genetics, 67, 170–181.CrossRefGoogle Scholar
  26. Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 5, 94–100.PubMedCrossRefGoogle Scholar
  27. Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P. M., Lundqvist, U., Franckowiak, J. D., Close, T. J., Muehlbauer, G. J., & Waugh, R. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics, 43, 169–172.PubMedCrossRefGoogle Scholar
  28. Rostoks, N. (2008, September 9–12) High throughput genotyping for characterization of barley germplasm. Proceedings of the EUCARPIA 18th General Congress, Valencia, Spain.Google Scholar
  29. Rostoks, N., Mudie, S., Cardle, L., Russell, J., Ramsay, L., Booth, A., Svensson, J. T., Wanamaker, S. I., Walia, H., Rodriguez, E. M., Hedley, P. E., Liu, H., Morris, J., Close, T. J., Marshall, D. F., & Waugh, R. (2005). Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics, 274, 515–527.PubMedCrossRefGoogle Scholar
  30. Rostoks, N., Ramsay, L., MacKenzie, K., Cardle, L., Bhat, P. R., Roose, M. L., Svensson, J. T., Stein, N., Varshney, R. K., Marshall, D. F., Graner, A., Close, T. J., & Waugh, R. (2006). Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceedings of the National Academy of Sciences of the United States of America, 103, 18656–18661.PubMedCrossRefGoogle Scholar
  31. Sarath, G., Mitchell, R. B., Sattler, S. E., Funnell, D., Pedersen, J. F., Graybosch, R. A., & Vogel, K. P. (2008). Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. Journal of Industrial Microbiology & Biotechnology, 35, 343–354.CrossRefGoogle Scholar
  32. Sjakste, T. G., Rashal, I., & Roder, M. S. (2003). Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theoretical and Applied Genetics, 106, 539–549.PubMedGoogle Scholar
  33. Slatkin, M. (2008). Linkage disequilibrium – Understanding the evolutionary past and mapping the medical future. Nature Reviews. Genetics, 9, 477–485.PubMedCrossRefGoogle Scholar
  34. Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R. K., Perovic, D., Grosse, I., & Graner, A. (2007). A 1,000-loci transcript map of the barley genome: New anchoring points for integrative grass genomics. Theoretical and Applied Genetics, 114, 823–839.PubMedCrossRefGoogle Scholar
  35. Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews. Genetics, 9, 433–443.PubMedCrossRefGoogle Scholar
  36. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10, 621–630.PubMedCrossRefGoogle Scholar
  37. Waugh, R., Jannink, J. L., Muehlbauer, G. J., & Ramsay, L. (2009). The emergence of whole genome association scans in barley. Current Opinion in Plant Biology, 12, 1–5.CrossRefGoogle Scholar
  38. Wolfe, M., Baresel, J., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Loeschenberger, F., Miedaner, T., Ostergard, H., & Lammerts van Bueren, E. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323–346.CrossRefGoogle Scholar
  39. Zhang, L. Y., Marchand, S., Tinker, N. A., & Belzile, F. (2009). Population structure and linkage disequilibrium in barley assessed by DArT markers. Theoretical and Applied Genetics, 119, 43–52.PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ieva Mezaka
    • 1
  • Linda Legzdina
    • 1
  • Robbie Waugh
    • 2
  • Timothy J. Close
    • 3
  • Nils Rostoks
    • 4
  1. 1.State Priekuli Plant Breeding InstitutePriekuliLatvia
  2. 2.The James Hutton InstituteDundeeUK
  3. 3.University of CaliforniaRiversideUSA
  4. 4.Faculty of BiologyUniversity of LatviaRigaLatvia

Personalised recommendations