Advertisement

Small-Molecule Regulation of MicroRNA Function

  • Colleen M. Connelly
  • Alexander Deiters
Chapter

Abstract

MicroRNAs (miRNAs) are single-stranded noncoding RNAs of 21–23 nucleotides, which regulate the expression of genes by binding to the 3′ untranslated regions of target messenger RNAs (mRNAs). MicroRNAs down-regulate gene expression by either inhibiting translation or accelerating the degradation of the mRNA. It is estimated that miRNAs are involved in the regulation of about 30 % of all genes and almost every genetic pathway, making miRNAs an important class of gene regulators. Variations in miRNA expression are involved in many human diseases including cancer, immune disorders, diabetes, and cardiovascular diseases. Thus, small molecule modifiers of miRNA function have potential as new therapeutic agents, as probes for the elucidation of detailed mechanisms of miRNA function and regulation, and as tools for the discovery of new targets for the treatment of human diseases. A variety of different assay systems have been developed and used in the discovery of small molecule modifiers of miRNA function. Identified small molecules regulate the miRNA pathway in either a general or a miRNA-specific fashion. The discovery and development of these molecules demonstrates that the miRNA pathway represents a feasible small molecule target. Several of these small molecules have also shown therapeutic potential in cell based experiments, supporting the idea that modifiers of miRNA function could lead to the identification of new drugs.

Keywords

Huh7 Cell RNAi Pathway miRNA Function miRNA Pathway Luciferase Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee R, Feinbaum R, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  2. 2.
    Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  3. 3.
    Pasquinelli A, Reinhart B, Slack F, Martindale M, Kuroda M et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefGoogle Scholar
  4. 4.
    Winter J, Jung S, Keller S, Gregory R, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMedCrossRefGoogle Scholar
  5. 5.
    Ghildiyal M, Zamore P (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedCrossRefGoogle Scholar
  6. 6.
    Carthew R, Sontheimer E (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCrossRefGoogle Scholar
  7. 7.
    Garzon R, Marcucci G, Croce C (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789PubMedCrossRefGoogle Scholar
  8. 8.
    Shenouda S, Alahari S (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28:369–378PubMedCrossRefGoogle Scholar
  9. 9.
    Esquela-Kerscher A, Slack F (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  10. 10.
    Carthew R (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16:203–208PubMedCrossRefGoogle Scholar
  11. 11.
    Vasudevan S, Tong Y, Steitz J (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  12. 12.
    Vasudevan S, Tong Y, Steitz JA (2008) Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7:1545–1549PubMedCrossRefGoogle Scholar
  13. 13.
    Appasani K (2008) MicroRNAs: from basic science to disease biology. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Sevignani C, Calin G, Siracusa L, Croce C (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang S, Chen L, Jung E, Calin G (2010) Targeting MicroRNAs With Small Molecules: From Dream to Reality. Clin Pharmacol Ther 87:754–758Google Scholar
  16. 16.
    Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90PubMedCrossRefGoogle Scholar
  17. 17.
    Du T, Zamore P (2005) microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652PubMedCrossRefGoogle Scholar
  18. 18.
    Lee Y, Ahn C, Han J, Choi H, Kim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedCrossRefGoogle Scholar
  19. 19.
    Bernstein E, Caudy A, Hammond S, Hannon G (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedCrossRefGoogle Scholar
  20. 20.
    Grishok A, Pasquinelli A, Conte D, Li N, Parrish S et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34PubMedCrossRefGoogle Scholar
  21. 21.
    Hutvágner G, McLachlan J, Pasquinelli A, Bálint E, Tuschl T et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838PubMedCrossRefGoogle Scholar
  22. 22.
    Ketting R, Fischer S, Bernstein E, Sijen T, Hannon G et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659PubMedCrossRefGoogle Scholar
  23. 23.
    Yi R, Qin Y, Macara I, Cullen B (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016PubMedCrossRefGoogle Scholar
  24. 24.
    Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11:1753–1761PubMedCrossRefGoogle Scholar
  25. 25.
    He L, Hannon G (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefGoogle Scholar
  26. 26.
    Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  27. 27.
    Chan S, Slack F (2006) microRNA-mediated silencing inside P-bodies. RNA Biol 3:97–100PubMedCrossRefGoogle Scholar
  28. 28.
    Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M et al (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11:14–23PubMedCrossRefGoogle Scholar
  29. 29.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  30. 30.
    Zhang X, Zeng Y (2010) Regulation of mammalian microRNA expression. J Cardiovasc Transl Res 3:197–203PubMedCrossRefGoogle Scholar
  31. 31.
    He L, Thomson J, Hemann M, Hernando-Monge E, Mu D et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833PubMedCrossRefGoogle Scholar
  32. 32.
    Calin G, Sevignani C, Dumitru C, Hyslop T, Noch E et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004PubMedCrossRefGoogle Scholar
  33. 33.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedCrossRefGoogle Scholar
  34. 34.
    Saito Y, Liang G, Egger G, Friedman J, Chuang J et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang L, Huang J, Yang N, Greshock J, Megraw M et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 103:9136–9141PubMedCrossRefGoogle Scholar
  36. 36.
    Shi X, Tepper C, deVere White R (2008) Cancerous miRNAs and their regulation. Cell Cycle 7:1529–1538PubMedCrossRefGoogle Scholar
  37. 37.
    O’Donnell K, Wentzel E, Zeller K, Dang C, Mendell J (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedCrossRefGoogle Scholar
  38. 38.
    Kim J, Inoue K, Ishii J, Vanti W, Voronov S et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224PubMedCrossRefGoogle Scholar
  39. 39.
    Thomson J, Newman M, Parker J, Morin-Kensicki E, Wright T et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207PubMedCrossRefGoogle Scholar
  40. 40.
    Davis B, Hilyard A, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61PubMedCrossRefGoogle Scholar
  41. 41.
    Trabucchi M, Briata P, Garcia-Mayoral M, Haase A, Filipowicz W et al (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459:1010–1014PubMedCrossRefGoogle Scholar
  42. 42.
    Viswanathan S, Daley G (2010) Lin28: A microRNA regulator with a macro role. Cell 140:445–449PubMedCrossRefGoogle Scholar
  43. 43.
    Hagan J, Piskounova E, Gregory R (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16:1021–1025PubMedCrossRefGoogle Scholar
  44. 44.
    Heo I, Joo C, Cho J, Ha M, Han J et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32:276–284PubMedCrossRefGoogle Scholar
  45. 45.
    Esau C (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60PubMedCrossRefGoogle Scholar
  46. 46.
    Veedu R, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542PubMedCrossRefGoogle Scholar
  47. 47.
    Brown B, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585PubMedCrossRefGoogle Scholar
  48. 48.
    Liu Z, Sall A, Yang D (2008) MicroRNA: An emerging therapeutic target and intervention tool. Int J Mol Sci 9:978–999PubMedCrossRefGoogle Scholar
  49. 49.
    Grünweller A, Hartmann R (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243PubMedCrossRefGoogle Scholar
  50. 50.
    Ebert M, Neilson J, Sharp P (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726PubMedCrossRefGoogle Scholar
  51. 51.
    Carè A, Catalucci D, Felicetti F, Bonci D, Addario A et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang S, Chen L, Jung E, Calin G (2010) Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 87:754–758PubMedCrossRefGoogle Scholar
  53. 53.
    Davies B, Arenz C (2006) A homogenous assay for micro RNA maturation. Angew Chem Int Ed Engl 45:5550–5552PubMedCrossRefGoogle Scholar
  54. 54.
    Shan G, Li Y, Zhang J, Li W, Szulwach K et al (2008) A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 26:933–940PubMedCrossRefGoogle Scholar
  55. 55.
    Bhanot SK, Singh M, Chatterjee NR (2001) The chemical and biological aspects of fluoroquinolones: reality and dreams. Curr Pharm Des 7:311–335PubMedCrossRefGoogle Scholar
  56. 56.
    Watashi K, Yeung M, Starost M, Hosmane R, Jeang K (2010) Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J Biol Chem 285:24707–24716PubMedCrossRefGoogle Scholar
  57. 57.
    Chiu Y, Dinesh C, Chu C, Ali A, Brown K et al (2005) Dissecting RNA-interference pathway with small molecules. Chem Biol 12:643–648PubMedCrossRefGoogle Scholar
  58. 58.
    Calin G, Dumitru C, Shimizu M, Bichi R, Zupo S et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedCrossRefGoogle Scholar
  59. 59.
    Dong JT, Boyd JC, Frierson HF (2001) Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49:166–171PubMedCrossRefGoogle Scholar
  60. 60.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949PubMedCrossRefGoogle Scholar
  61. 61.
    Baudry A, Mouillet-Richard S, Schneider B, Launay J, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329:1537–1541PubMedCrossRefGoogle Scholar
  62. 62.
    Tong A, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355PubMedCrossRefGoogle Scholar
  63. 63.
    Ciafrè S, Galardi S, Mangiola A, Ferracin M, Liu C et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedCrossRefGoogle Scholar
  64. 64.
    Iorio M, Ferracin M, Liu C, Veronese A, Spizzo R et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedCrossRefGoogle Scholar
  65. 65.
    Si M, Zhu S, Wu H, Lu Z, Wu F et al (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803PubMedCrossRefGoogle Scholar
  66. 66.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob S et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedCrossRefGoogle Scholar
  67. 67.
    Corsten M, Miranda R, Kasmieh R, Krichevsky A, Weissleder R et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000PubMedCrossRefGoogle Scholar
  68. 68.
    Mattie M, Benz C, Bowers J, Sensinger K, Wong L et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24PubMedCrossRefGoogle Scholar
  69. 69.
    Wickramasinghe N, Manavalan T, Dougherty S, Riggs K, Li Y et al (2009) Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 37:2584–2595PubMedCrossRefGoogle Scholar
  70. 70.
    Bhat-Nakshatri P, Wang G, Collins N, Thomson M, Geistlinger T et al (2009) Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 37:4850–4861PubMedCrossRefGoogle Scholar
  71. 71.
    Shin VY, Jin H, Ng EK, Cheng AS, Chong WW et al (2010) NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. CarcinogenesisGoogle Scholar
  72. 72.
    Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338PubMedCrossRefGoogle Scholar
  73. 73.
    Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253PubMedCrossRefGoogle Scholar
  74. 74.
    Valeri N, Gasparini P, Braconi C, Paone A, Lovat F et al (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 107:21098–21103Google Scholar
  75. 75.
    Tomimaru Y, Eguchi H, Nagano H, Wada H, Tomokuni A et al (2010) MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer 103:1617–1626PubMedCrossRefGoogle Scholar
  76. 76.
    Zhou J, Zhou Y, Yin B, Hao W, Zhao L et al (2010) 5-Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro. Oncol Rep 23:121–128PubMedGoogle Scholar
  77. 77.
    Shah MY, Pan X, Fix LN, Farwell MA, Zhang B (2011) 5-Fluorouracil drug alters the microRNA expression profiles in MCF-7 breast cancer cells. J Cell Physiol 226:1868–1878Google Scholar
  78. 78.
    Gumireddy K, Young D, Xiong X, Hogenesch J, Huang Q et al (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47:7482–7484PubMedCrossRefGoogle Scholar
  79. 79.
    Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43Google Scholar
  80. 80.
    Chang J, Nicolas E, Marks D, Sander C, Lerro A et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113PubMedCrossRefGoogle Scholar
  81. 81.
    Esau C, Davis S, Murray S, Yu X, Pandey S et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98PubMedCrossRefGoogle Scholar
  82. 82.
    Parkin D, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  83. 83.
    Lin C, Gong H, Tseng H, Wang W, Wu J (2008) miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375:315–320PubMedCrossRefGoogle Scholar
  84. 84.
    Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S et al (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67:6092–6099PubMedCrossRefGoogle Scholar
  85. 85.
    Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661PubMedCrossRefGoogle Scholar
  86. 86.
    Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol 7:448–458PubMedCrossRefGoogle Scholar
  87. 87.
    Jopling C, Yi M, Lancaster A, Lemon S, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581PubMedCrossRefGoogle Scholar
  88. 88.
    Jopling C, Norman K, Sarnow P (2006) Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol 71:369–376PubMedCrossRefGoogle Scholar
  89. 89.
    Lanford R, Hildebrandt-Eriksen E, Petri A, Persson R, Lindow M et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201PubMedCrossRefGoogle Scholar
  90. 90.
    Young D, Connelly C, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981PubMedCrossRefGoogle Scholar
  91. 91.
    Yi M, Lemon S (2004) Adaptive mutations producing efficient replication of genotype 1a hepatitis C virus RNA in normal Huh7 cells. J Virol 78:7904–7915PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations