Climate Change Mitigation: Options, Costs and Risks

  • Brigitte Knopf
  • Martin Kowarsch
  • Ottmar Edenhofer
  • Gunnar Luderer
Chapter

Abstract

Over the last few years political declarations by the European Union (EC (European Community), Climate change – Council conclusions 8518/96 (Presse 188-G) 25/26. VI.96, 1996), the G8 (Major Economics Forum, Declaration of the leaders of the major economies forum on energy and climate, MEF, 2009. http://www.g8italia2009.it/static/G8_Allegato/MEF_Declarationl.pdf) and in the Copenhagen Accord (UNFCCC, Draft decision -/CP.15: Proposal by the President. Conference of the Parties, Fifteenth session, Copenhagen, 2010. Retrieved July 6, 2010, from http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf) have referred to the 2°C target as a potential goal for climate protection. Such an objective is undoubtedly highly ambitious but has not been made a binding target under international law. The Copenhagen Accord also failed to address the willingness of nations to take the necessary measures to attain this target. If the 2°C target is to be pursued by policy-makers, a robust assessment by the scientific community of the side risks and benefits of achieving this mitigation target will be required. This includes the careful evaluation of different technology options and the associated costs of mitigation.

In this chapter we describe the historical challenge of mitigating climate change and present mitigation strategies assessed with intertemporal general equilibrium models. We complement the analysis with a detailed risk assessment of the technology portfolio.

Keywords

Climate change mitigation Mitigation technologies CCS Consumption patterns Technological risks 

References

  1. Anderson, J., Chiavari, J., de Coninck, H., Shackley, S., Sigurthorsson, G., Flach, T., Reiner, D., Upham, P., Richardson, P., & Curnow, P. (2009). Results from the project ‘Acceptance of CO2 capture and storage: Economics, policy and technology (ACCSEPT)’. Energy Procedia, 1(1), 4649–4653.CrossRefGoogle Scholar
  2. Barrett, S. (2008). The incredible economics of geoengineering. Environmental and Resource Economics, 39(1), 45–54.CrossRefGoogle Scholar
  3. BGR (Bundesamt für Geowissenschaften und Rohstoffe). (2009). Energierohstoffe 2009: Reserven, Ressourcen,Verfügbarkeit. Hannover: Federal Institute for Geosciences and Natural Resources.Google Scholar
  4. Boden, T. A., Marland, G., & Andres, R. J. (2009). Global, regional, and national fossil-fuel CO 2 emissions. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. doi: 10.3334/CDIAC/00001.Google Scholar
  5. Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S., & Tavoni, M. (2009). International climate policy architectures: Overview of the EMF 22 international scenarios. Energy Economics, 31, 64–81.CrossRefGoogle Scholar
  6. de Coninck, H., Stephens, J., & Metz, B. (2009). Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy, 37(6), 2161–2165.CrossRefGoogle Scholar
  7. EC (European Community). (1996). Climate change – Council conclusions 8518/96 (Presse 188-G) 25/26. VI.96.Google Scholar
  8. Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., Criqui, P., Isaac, M., Kitous, A., Kypreos, S., Leimbach, M., Lessmann, K., Magné, B., Scrieciu, S., Turton, H., & van Vuuren, D. P. (2010). The economics of low stabilization: Model comparison of mitigation strategies and costs. The Energy Journal, 31, 11–48 (Special Issue 1).Google Scholar
  9. Hofmann, M., & Schellnhuber, H.-J. (2009). Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. PNAS, 106(9), 3017–3022.CrossRefGoogle Scholar
  10. IEA (International Energy Agency). (2007a). Energy balances of OECD countries 1960–2005. Manchester: Energy Statistics Division. University of Manchester: ESDS International.Google Scholar
  11. IEA (International Energy Agency). (2007b). Energy balances of non-OECD countries 1971–2005. Manchester: Energy Statistics Division University of Manchester: ESDS International.CrossRefGoogle Scholar
  12. IEA (International Energy Agency). (2009). World energy outlook 2009. Paris: IEA.CrossRefGoogle Scholar
  13. IPCC. (2005). IPCC special report on carbon dioxide capture and storage. In B. Metz, O. Davidson, H. C. de Coninck, M. Loos, & L. A. Meyer (Eds.). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. von Stechow (Eds.). Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  14. IPCC. (2011). IPCC special report on renewable energy sources and climate change mitigation. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. von Stechow (Eds.). Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.Google Scholar
  15. Keith, D. W., Parson, E., & Morgan, M. G. (2010). Research on global sun block needed now: Opinion. Nature, 463, 426–427. doi: 10.1038/463426a.CrossRefGoogle Scholar
  16. Knopf, B., Edenhofer, O., Barker, T., Bauer, N., Baumstark, L., Chateau, B., Criqui, P., Held, A., Isaac, M., Jakob, M., Jochem, E., Kitous, A., Kypreos, S., Leimbach, M., Magné, B., Mima, S., Schade, W., Scrieciu, S., Turton, H., & van Vuurenm, D. (2009). The economics of low stabilisation: Implications for technological change and policy. In M. Hulme & H. Neufeldt (Eds.), Making climate change work for us: European perspectives on adaptation and mitigation strategies. New York: Cambridge University Press.Google Scholar
  17. Knopf, B., Edenhofer, O., Flachsland, C., Kok, M. T. J., Lotze-Campen, H., Luderer, G., Popp, A., & Van Vuuren, D. P. (2010). Managing the low-carbon transition – From model results to policies. Energy Journal, 31, 223–245.Google Scholar
  18. Knopf, B., Luderer, G., & Edenhofer, O. (2011). Exploring the feasibility of low mitigation targets. Wiley Interdisciplinary Reviews: Climate Change, 2, 617–626. doi: 10.1002/wcc.124.CrossRefGoogle Scholar
  19. Krey, V., & Clarke, L. (2011). Renewable energy and climate mitigation: A large-scale scenarios review. Climate Policy, 11(4), 1131–1158.Google Scholar
  20. Lenton, T. M., & Vaughan, N. E. (2009). The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics, 9, 5539–5561.CrossRefGoogle Scholar
  21. Lovett, R. (2010). Geoengineering won’t curb sea-level rise. Nature News. Retrieved August 23, 2010, from (http://www.nature.com/news/2010/100823/full/news.2010.426.html). doi:  10.1038/news.2010.426
  22. Luderer, G., Bosetti, V., Jakob, M., Leimbach, M., Steckel, J., & Waisman, H. (2011). On the economics of decarbonization – Results and insights from the RECIPE model intercomparison. Climatic Change. doi: 10.1007/s10584-011-0105-x.
  23. Major Economics Forum. (2009). Declaration of the leaders of the Major Economies Forum on energy and climate, MEF. http://www.g8italia2009.it/static/G8_Allegato/MEF_Declarationl.pdf
  24. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., & Allen, M. R. (2009). Greenhouse gas emission targets for limiting global warming to 2°C. Nature, 458(7242), 1158.CrossRefGoogle Scholar
  25. Moore, J. C., Jevrejevad, S., & Grinstede, A. (2010). Efficacy of geoengineering to limit 21st century sea-level rise. PNAS, 107(36), 15699–15703.CrossRefGoogle Scholar
  26. Neuhoff, K., Dröge, S., Edenhofer, O., Flachsland, C., Held, H., Ragwitz, M., Strohschein, J., Türk, A., & Michaelowa, A. (2009). Translating model results into economic policies (RECIPE Working Paper). Potsdam: PIK. www.pik-potsdam.de/recipe
  27. Popp, A., Lotze-Campen, H., & Bodirsky, B. (2010). Food consumption, diet shifts and associated non-CO2 greenhouse gas emissions from agricultural production. Global Environmental Change, 20, 451–462.CrossRefGoogle Scholar
  28. Popp, A., Dietrich, J. P., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., & Edenhofer, O. (2011). The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters. doi: 10.1088/1748-9326/6/3/034017.
  29. Ricke, K., Morgan, M. G., & Allen, M. R. (2010). Regional climate response to solar-radiation management. Nature Geoscience, 3, 537–541.CrossRefGoogle Scholar
  30. Robock, A., Marquardt, A., Kravitz, B., & Stenchikov, G. (2009). Benefits, risks, and costs of stratospheric geoengineering. Geophysical Research Letters, 36. doi: 10.1029/2009GL039209.
  31. Stehfest, E., Bouwman, L., van Vuuren, D. P., den Elzen, M. G. J., Eickhout, B., & Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95(1–2), 83–102. doi: 10.1007/s10584-008-9534-6.CrossRefGoogle Scholar
  32. The Royal Society. (2009). Geoengineering the climate: Science, governance and uncertainty (RS Policy document 10/09). London: The Royal Society. From http://royalsociety.org/geoengineering-the-climate/
  33. Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J., Searchinger, T., Somerville, C., & Williams, R. (2009). Beneficial biofuels – The food, energy, and environment trilemma. Science, 325, 270–271. doi: 10.1126/science.1177970.CrossRefGoogle Scholar
  34. UNFCCC. (2010, 7–18 December). Draft decision -/CP.15: Proposal by the President. Conference of the Parties, Fifteenth session, Copenhagen. Retrieved July 6, 2010, from http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf
  35. Victor, D. G., Morgan, M. G., Apt, J., Steinbruner, J., & Ricke, K. (2009). The geoengineering option: A last resort against global warming? Foreign Affairs, published by the Council on Foreign Relations. From http://d1027732.mydomainwebhost.com/articles/articles/CFR_The_Geoengineering_Option.pdf
  36. Wigley, T. M. L. (2006). A combined mitigation/geoengineering approach to climate stabilization. Science, 314, 452–454. doi: 10.1126/science.1131728.CrossRefGoogle Scholar
  37. Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S., Janetos, A., & Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183–1186. doi: 10.1126/science.1168475.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Brigitte Knopf
    • 1
  • Martin Kowarsch
    • 2
  • Ottmar Edenhofer
    • 1
  • Gunnar Luderer
    • 1
  1. 1.Sustainable SolutionsPotsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Institute for Social and Development Studies (IGP)Munich School of PhilosophyMunichGermany

Personalised recommendations