Extremes in a Changing Climate pp 115-162

Part of the Water Science and Technology Library book series (WSTL, volume 65)

Multivariate Extreme Value Methods



Multivariate extremes occur in several hydrologic and water resources problems. Despite their practical relevance, the real-life decision making as well as the number of designs based on an explicit treatment of multivariate variables is yet limited as compared to univariate analysis. A first problem arising when working in a multidimensional context is the lack of a “natural” definition of extreme values: essentially, this is due to the fact that different concepts of multivariate order and failure regions are possible. Also, in modeling multivariate extremes, central is the issue of dependence between the variables involved: again, several approaches are possible. A further practical problem is represented by the construction of multivariate Extreme Value models suitable for applications: the task is indeed difficult from a mathematical point of view. In addition, the calculation of multivariate Return Periods, quantiles, and design events, which represent quantities of utmost interest in applications, is rather tricky. In this Chapter we show how the use of Copulas may help in dealing with (and, possibly, solving) these problems.


  1. Alexander G (1954) Some aspects of time series in hydrology. J Inst Eng Aust 26196Google Scholar
  2. Bacchi B, Becciu G, Kottegoda N (1994) Bivariate exponential model applied to intensities and durations of extreme rainfall. J Hydrol 155:225–236CrossRefGoogle Scholar
  3. Barbe P, Genest C, Ghoudi K, Rémillard B (1996) On Kendall’s process. J Multivar Anal 58(2):197–229CrossRefGoogle Scholar
  4. Belzunce F, Castaño A, Olvera-Cervantes A, Suárez-Llorens A (2007) Quantile curves and dependence structure for bivariate distributions. Comput Stat Data Anal 51(10):5112–5129CrossRefGoogle Scholar
  5. Berg D (2009) Copula goodness-of-fit testing: an overview and power comparison. Eur J Financ 15(7–8):675–701CrossRefGoogle Scholar
  6. Berger JO (1985) Statistical decision theory and bayesian analysis, 2nd edn. Springer, New YorkGoogle Scholar
  7. Blomqvist N (1950) On a measure of dependence between two random variables. Ann Math Stat 21:593–600CrossRefGoogle Scholar
  8. Charpentier A (2006) Dependence structures and limiting results, with applications in finance and insurance. Ph.D. thesis, Katholieke Universiteit Leuven (Belgium)Google Scholar
  9. Chebana F, Ouarda TBMJ (2009a) Index flood-based multivariate regional frequency analysis. Water Resour Res 45:W10,435. doi: 10.1029/2008WR007490CrossRefGoogle Scholar
  10. Chebana F, Ouarda TBMJ (2009b) Multivariate quantiles in hydrological frequency analysis. Environmetrics. doi: 10.1002/env.1027Google Scholar
  11. Chebana F, Ouarda T (2011) Multivariate extreme value identification using depth functions. Environmetrics 22(3):441–455. doi: 10.1002/env.1089CrossRefGoogle Scholar
  12. Cherubini U, Romagnoli S (2009) Computing the volume of n-dimension copulas. Appl Math Financ 16(4):307–314CrossRefGoogle Scholar
  13. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London/ New YorkGoogle Scholar
  14. Coles S, Tawn J (1991) Modeling extreme multivariate events. J R Stat Soc B 53(2):377–392Google Scholar
  15. Coles S, Tawn J (1994) Statistical methods for multivariate extremes: an application to structural design. Appl Stat 43:1–48CrossRefGoogle Scholar
  16. Coles S, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2(4):339–365CrossRefGoogle Scholar
  17. Cooley D (2009) Extreme value analysis and the study of climate change: a commentary on Wigley 1988. Clim Chang 97:77–83CrossRefGoogle Scholar
  18. Cox DR (1962) Renewal theory. Wiley, New YorkGoogle Scholar
  19. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge series in statistical and probabilistic mathematics, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  20. De Haan L, Resnick S (1977) Limit theory for multivariate sample extremes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 40(4):317–337CrossRefGoogle Scholar
  21. Deheuvels P (1979) La fonction de dépendence empirique et ses propriétés. un test non paramétrique d’indépendence. Acad R Belg Bull Cl Sci 65(5):274–292Google Scholar
  22. De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. ASCE J Hydrol Eng 10(1):50–57CrossRefGoogle Scholar
  23. De Michele C, Salvadori G, Passoni G, Vezzoli R (2007) A multivariate model of sea storms using copulas. Coast Eng 54:734–751CrossRefGoogle Scholar
  24. Devroye L (1986) Non-uniform random variate generation. Springer, New YorkGoogle Scholar
  25. DiCiccio TJ, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11(3):189–228CrossRefGoogle Scholar
  26. Durante F (2008) Construction of non-exchangeable bivariate distribution functions. Stat Papers. In pressGoogle Scholar
  27. Durante F, Salvadori G (2010) On the construction of multivariate extreme value models via copulas. Environmetrics 21:143–161Google Scholar
  28. Durante F, Quesada-Molina J, Úbeda-Flores M (2007) On a family of multivariate copulas for aggregation processes. Inf Sci 177(24):5715–5724CrossRefGoogle Scholar
  29. Embrechts P, McNeil A, Straumann D (2002) Correlation and dependence in risk management: properties and pitfalls. In: Risk management: value at risk and beyond. Cambridge University Press, CambridgeGoogle Scholar
  30. Embrechts P, Klüppelberg C, Mikosch T (2003) Modelling extremal events for insurance and finance, 4th edn. Springer, BerlinGoogle Scholar
  31. Falk M, Reiss RD (2005) On Pickands coordinates in arbitrary dimensions. J Multivar Anal 92:426–453CrossRefGoogle Scholar
  32. Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):W01101. doi: 10. 1029/2003WR002456CrossRefGoogle Scholar
  33. Feller W (1971) An introduction to probability and its applications, vol 1, 3rd edn. Wiley, New YorkGoogle Scholar
  34. Frahm G (2006) On the extremal dependence coefficient of multivariate distributions. Stat Probab Lett 76:1470–1481CrossRefGoogle Scholar
  35. Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100CrossRefGoogle Scholar
  36. Fredericks G, Nelsen R (2007) On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous variables. J Stat Plan Inference 137:2143–2150CrossRefGoogle Scholar
  37. Galambos J (1987) The asymptotic theory of extreme order statistics, 2nd edn. Kreiger, MalabarGoogle Scholar
  38. Genest C, Favre A (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368CrossRefGoogle Scholar
  39. Genest C, Rivest L (1989) A characterization of Gumbel’s family of extreme value distributions. Stat Probab Lett 8:207–211CrossRefGoogle Scholar
  40. Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043CrossRefGoogle Scholar
  41. Genest C, Rivest LP (2001) On the multivariate probability integral transformation. Stat Probab Lett 53(4):391–399CrossRefGoogle Scholar
  42. Genest C, Segers J (2009) Rank-based inference for bivariate Extreme Value copulas. Ann Stat 37(5B):2990–3022Google Scholar
  43. Genest C, Ghoudi K, Rivest LP (1998) Understanding relationships using copulas, by Edward Frees and Emiliano Valdez, January 1998. North Am Act J 2(3):143–149Google Scholar
  44. Genest C, Quessy JF, Rémillard B (2006) Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand J Stat 33:337–366CrossRefGoogle Scholar
  45. Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–213CrossRefGoogle Scholar
  46. Ghoudi K, Khoudraji A, Rivest L (1998) Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 26:187–197CrossRefGoogle Scholar
  47. Grenney W, Heyse E (1985) Suspended sediment – river flow analysis. J Environ Eng 111(6): 790–803CrossRefGoogle Scholar
  48. Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29(8):1155–1167CrossRefGoogle Scholar
  49. Gudendorf G, Segers J (2010) Extreme-value copulas. In: Jaworski P, Durante F, Härdle W, Rychlik T (eds) Copula theory and its applications. Lecture notes in statistics – proceedings, vol 198. Springer, Berlin/Heidelberg, pp 127–145Google Scholar
  50. Herr H, Krzysztofowicz R (2005) Generic probability distribution of rainfall in space: the bivariate model. J Hydrol 306(1–2):234–263CrossRefGoogle Scholar
  51. Hosking J, Wallis J (1988) The effect of intersite dependence on regional flood frequency analysis. Water Resour Res 24(2):588–600CrossRefGoogle Scholar
  52. Hutchinson T, Lai C (1990) Continuous bivariate distributions, emphasising applications. Rumsby Scientific Publishing, AdelaideGoogle Scholar
  53. Jaworski P, Durante F, Haerdle W, Rychlik T (eds) (2010) Copula theory and its applications. Lecture notes in statistics – proceedings, vol 198. Springer, Berlin/HeidelbergGoogle Scholar
  54. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  55. Joe H (1993) Parametric families of multivariate distributions with given margins. J Multivar Anal 46:262–282CrossRefGoogle Scholar
  56. Joe H (1994) Multivariate extreme-value distributions with applications to environmental data. Can J Stat 22:47–64CrossRefGoogle Scholar
  57. Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, LondonGoogle Scholar
  58. Johnson M (1987) Multivariate statistical simulation. Wiley, New YorkGoogle Scholar
  59. Journel A, Alabert F (1988) Non-gaussian data expansion in the earth sciences. TERRA Nova 1:123–134CrossRefGoogle Scholar
  60. Juri A, Wüthrich M (2002) Copula convergence theorems for tail events. Insur Math Econ 24Google Scholar
  61. Katz R (2010) Statistics of extremes in climate change. Clim Chang 100:71–76CrossRefGoogle Scholar
  62. Keef C, Svensson C, Tawn J (2009) Spatial dependence in extreme river flows and precipitation for Great Britain. J Hydrol 378(3–4):240–252CrossRefGoogle Scholar
  63. Kendall M (1937) A new measure of rank correlation. Biometrika 6:83–93Google Scholar
  64. Khoudraji A (1995) Contributions à l’étude des copules et à la modélisation des valeurs extrêmes bivariées. Ph.D. thesis, Université de Laval, Québec (Canada)Google Scholar
  65. Kim TW, Valdes J, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. ASCE J Hydrol Eng 8(5):237–246CrossRefGoogle Scholar
  66. Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit tests for copulas. Stat Sin 21(2):841–871CrossRefGoogle Scholar
  67. Kottegoda N, Natale L (1994) Two-component log-normal distribution of irrigation-affected low-flows. J Hydrol 158:187–199CrossRefGoogle Scholar
  68. Kruskal W (1958) Ordinal measures of association. J Am Stat Assoc 53:814–861CrossRefGoogle Scholar
  69. Liebscher E (2008) Construction of asymmetric multivariate copulas. J Multivar Anal 99: 2234–2250CrossRefGoogle Scholar
  70. Mai J, Scherer M (2010) Bivariate extreme-value copulas with discrete pickands dependence measure. Extremes 14:311–324CrossRefGoogle Scholar
  71. Marshall A, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62:30–44CrossRefGoogle Scholar
  72. Marshall A, Olkin I (1983) Domains of attraction of multivariate Extreme Value distributions. Ann Probab 11(1):168–177CrossRefGoogle Scholar
  73. Marshall A, Olkin I (1988) Families of multivariate distributions. J Am Stat Assoc 83(403): 834–841CrossRefGoogle Scholar
  74. Nelsen R (1996) Nonparametric measures of multivariate association. In: Distributions with fixed marginals and related topics (Seattle, WA, 1993). IMS lecture notes monograph series, vol 28. Institute of mathematical statistics. Hayward, pp 223–232Google Scholar
  75. Nelsen R (1997) Dependence and order in families of Archimedean copulas. J Multivar Anal 60:111–122CrossRefGoogle Scholar
  76. Nelsen R (2006) An introduction to copulas, 2nd edn. Springer, New YorkGoogle Scholar
  77. Nelsen RB, Quesada-Molina JJ, Rodríguez-Lallena JA, Úbeda-Flores M (2001) Distribution functions of copulas: a class of bivariate probability integral transforms. Stat Probab Lett 54(3):277–282CrossRefGoogle Scholar
  78. Nelsen RB, Quesada-Molina JJ, Rodríguez-Lallena JA, Úbeda-Flores M (2003) Kendall distribution functions. Stat Probab Lett 65(3):263–268CrossRefGoogle Scholar
  79. Pickands J (1981) Multivariate Extreme Value distributions. Bull Int Stat Inst 49:859–878Google Scholar
  80. Pons F (1992) Regional flood frequency analysis based on multivariate lognormal models. Ph.D. thesis, Colorado State University, Fort CollinsGoogle Scholar
  81. Poulin A, Huard D, Favre A, Pugin S (2007) On the importance of the tail dependence in bivariate frequency analysis. ASCE J Hydrol Eng 12(4):394–403. doi: 10.1061/(ASCE) 1084-0699(2007)12:4(394). (Special Issue on Copulas in Hydrology)CrossRefGoogle Scholar
  82. Press W, Flannery B, Teukolsky S, Vetterling W (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  83. Raynal-Villasenor J, Salas J (1987) Multivariate extreme value distributions in hydrological analyses. In: IAHS (ed) Water for the future: hydrology in perspective, vol 164, pp 111–119Google Scholar
  84. Robert C (2007) The bayesian choice, 2nd edn. Springer, New YorkGoogle Scholar
  85. Rohatgi V (1976) An introduction to probability theory and mathematical statistics. Wiley, New YorkGoogle Scholar
  86. Rootzén H, Tajvidi N (2006) Multivariate generalized Pareto distributions. Bernoulli 12(5): 917–930CrossRefGoogle Scholar
  87. Russo D (2009) On probability distribution of hydraulic conductivity in variably saturated bimodal heterogeneous formations. J Vadose Zone 8:611–622CrossRefGoogle Scholar
  88. Salvadori G (2004) Bivariate return periods via 2-copulas. Stat Methodol 1:129–144CrossRefGoogle Scholar
  89. Salvadori G, De Michele C (2004) Frequency analysis via Copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40:W12511CrossRefGoogle Scholar
  90. Salvadori G, De Michele C (2010) Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour Res 46:W10501CrossRefGoogle Scholar
  91. Salvadori G, De Michele C (2011) Estimating strategies for multiparameter multivariate extreme value copulas. Hydrol Earth Syst Sci 15:141–150CrossRefGoogle Scholar
  92. Salvadori G, De Michele C, Kottegoda N, Rosso R (2007) Extremes in nature. An approach using copulas. Water science and technology library, vol 56. Springer, DordrechtGoogle Scholar
  93. Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci Discuss 15:3293–3305. doi: 10.5194/ hess-15-3293-2011CrossRefGoogle Scholar
  94. Scarsini M (1984) On measures of concordance. Stochastica 8:201–218Google Scholar
  95. Schmid F, Schmidt R (2007a) Multivariate extensions of Spearman’s rho and related statistics. Stat Probab Lett 77(4):407–416CrossRefGoogle Scholar
  96. Schmid F, Schmidt R (2007b) Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence. Metrika 66:323–354CrossRefGoogle Scholar
  97. Schmid F, Schmidt R (2007c) Multivariate conditional versions of Spearman’s rho and related measures of tail dependence. J Multivar Anal 98(6):1123–1140CrossRefGoogle Scholar
  98. Schmidt R (2003) Dependencies of extreme events in finance, modelling, statistics and data analysis. Ph.D. thesis, Universität Ulm, Fakultät für Mathematik und WirtschaftswissenschaftenGoogle Scholar
  99. Schweizer B, Wolff E (1981) On nonparametric measures of dependence for random variables. Ann Stat 9:879–885CrossRefGoogle Scholar
  100. Serfling R (2002) Quantile functions for multivariate analysis: approaches and applications. Stat Neerl 56(2):214–232CrossRefGoogle Scholar
  101. Sibuya M (1960) Bivariate extreme statistics. Ann Inst Stat Math Tokyo 11:195–210CrossRefGoogle Scholar
  102. Singh V (ed) (1986) Hydrologic frequency modeling. Reidel, DordrechtGoogle Scholar
  103. Singh V, Jain S, Tyagi A (2007) Risk and reliability analysis. ASCE Press, RestonGoogle Scholar
  104. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Public Inst Stat Univ Paris 8:229–231Google Scholar
  105. Smith J (1988) Decision analysis: a bayesian approach. Chapman and Hall, London/New YorkGoogle Scholar
  106. Stedinger J (1983) Estimating a regional flood frequency distribution. Water Resour Res 19(2): 503–510CrossRefGoogle Scholar
  107. Tawn J (1990) Modelling multivariate extreme value distributions. Biometrika 77(2):245–253CrossRefGoogle Scholar
  108. Titterington D, Smith A, Makov U (1985) Statistical analysis of finite mixture distributions. Wiley, New JerseyGoogle Scholar
  109. Vandenberghe S, Verhoest NEC, Buyse E, Baets BD (2010) A stochastic design rainfall generator based on copulas and mass curves. Hydrol Earth Syst Sci 14:2429–2442CrossRefGoogle Scholar
  110. Wigley T (1988) The effect of changing climate on the frequency of absolute extreme events. Clim Monit 17:44–55. Reprinted in (2009) Clim Chang 97:67–76Google Scholar
  111. Wilks D (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210:178–191CrossRefGoogle Scholar
  112. Yue S (2000) The Gumbel logistic model for representing a multivariate storm event. Adv Water Resour 24:179–185CrossRefGoogle Scholar
  113. Zhang L (2005) Multivariate hydrological frequency analysis and risk mapping. Ph.D. thesis, Louisiana State University, Baton RougeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Fisica “E. De Giorgi”Università del SalentoLecceItaly
  2. 2.Department of HydraulicEnvironmental, Roads and Surveying Engineering, Politecnico di MilanoMilanoItaly

Personalised recommendations