The Human Mirror Neuron System, Social Control, and Language

Chapter

Abstract

The human putative mirror neuron system (MNS) is a key network hypothesized to play a role in many social cognitive and language-related abilities. This chapter begins by discussing basic findings on the mirror system, which encompasses motor-related brain regions that fire when an individual both performs and observes others perform actions. We then discuss how these shared action/observation regions are thought to underlie one’s ability to understand others via simulation of their actions onto one’s own motor representations. Finally, we conclude by noting how the frontal mirror region coincides with Broca’s area, a language region in the brain, leading some to propose that the MNS may also play a role in language and gesture abilities.

References

  1. Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral Brain Sciences, 28(2), 105–124; discussion 125–167.Google Scholar
  2. Arbib, M. A. (2010). Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain and Language, 112(1), 12–24.CrossRefGoogle Scholar
  3. Arbib, M. A., & Mundhenk, T. N. (2005). Schizophrenia and the mirror system: An essay. Neuropsychologia, 43(2), 268–280.CrossRefGoogle Scholar
  4. Aziz-Zadeh, L., & Damasio, A. (2008). Embodied semantics for actions: Findings from functional brain imaging. Journal of Physiology, Paris, 102(1–3), 35–39.CrossRefGoogle Scholar
  5. Aziz-Zadeh, L., Maeda, F., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2002). Lateralization in motor facilitation during action observation: A TMS study. Experimental Brain Research, 144(1), 127–131.CrossRefGoogle Scholar
  6. Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006a). Lateralization of the human mirror neuron system. Journal of Neuroscience, 26(11), 2964–2970.CrossRefGoogle Scholar
  7. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006b). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16(18), 1818–1823.CrossRefGoogle Scholar
  8. Aziz-Zadeh, L., Sheng, T., & Gheytanchi, A. (2010). Common premotor regions for the perception and production of prosody and correlations with empathy and prosodic ability. PLoS One, 5(1), e8759.CrossRefGoogle Scholar
  9. Aziz-Zadeh, L., Sheng, T., Liew, S.-L., & Damasio, H. (2012). Understanding otherness: The neural basis of action understanding and empathy in a congenital amputee. Cerebral Cortex, 22(4), 811–819.CrossRefGoogle Scholar
  10. Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. European Journal of Neuroscience, 13(1), 190–194.CrossRefGoogle Scholar
  11. Banissy, M. J., & Ward, J. (2007). Mirror-touch synesthesia is linked with empathy. Nature Neuroscience, 10(7), 815–816.CrossRefGoogle Scholar
  12. Barsalou, L. W. (1999). Perceptions of perceptual symbols. The Behavioral and Brain Sciences, 22(04), 637–660.CrossRefGoogle Scholar
  13. Bernardis, P., & Gentilucci, M. (2006). Speech and gesture share the same communication system. Neuropsychologia, 44(2), 178–190.CrossRefGoogle Scholar
  14. Blakemore, S. J., Bristow, D., Bird, G., Frith, C., & Ward, J. (2005). Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain, 128(7), 1571.CrossRefGoogle Scholar
  15. Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17(24), 2117–2121.CrossRefGoogle Scholar
  16. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13(2), 400–404.Google Scholar
  17. Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004a). Neural circuits involved in the recognition of actions performed by nonconspecifics: An FMRI study. Journal of Cognitive Neuroscience, 16(1), 114–126.CrossRefGoogle Scholar
  18. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., et al. (2004b). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323–334.CrossRefGoogle Scholar
  19. Buccino, G., Solodkin, A., & Small, S. L. (2006). Functions of the mirror neuron system: Implications for neurorehabilitation. Cognitive and Behavioral Neurology, 19(1), 55–63.CrossRefGoogle Scholar
  20. Bufalari, I., Aprile, T., Avenanti, A., Di Russo, F., & Aglioti, S. M. (2007). Empathy for pain and touch in the human somatosensory cortex. Cerebral Cortex, 17(11), 2553–2561.CrossRefGoogle Scholar
  21. Buxbaum, L. J., Haaland, K. Y., Hallett, M., Wheaton, L., Heilman, K. M., Rodriguez, A., et al. (2008). Treatment of limb apraxia: Moving forward to improved action. American Journal of Physical Medicine & Rehabilitation, 87(2), 149–161.CrossRefGoogle Scholar
  22. Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., et al. (2011). View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Current Biology, 21(2), 144–148.CrossRefGoogle Scholar
  23. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.CrossRefGoogle Scholar
  24. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.CrossRefGoogle Scholar
  25. Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5497.CrossRefGoogle Scholar
  26. Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1528), 2369–2380.CrossRefGoogle Scholar
  27. Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910.CrossRefGoogle Scholar
  28. Cheng, Y., Lin, C. P., Liu, H. L., Hsu, Y. Y., Lim, K. E., Hung, D., et al. (2007). Expertise modulates the perception of pain in others. Current Biology, 17(19), 1708–1713.CrossRefGoogle Scholar
  29. Chiao, J. Y., Iidaka, T., Gordon, H. L., Nogawa, J., Bar, M., Aminoff, E., et al. (2008). Cultural specificity in amygdala response to fear faces. Journal of Cognitive Neuroscience, 20(12), 2167–2174.CrossRefGoogle Scholar
  30. Chiarello, C., Knight, R., & Mandel, M. (1982). Aphasia in a prelingually deaf woman. Brain, 105(Pt 1), 29–51.CrossRefGoogle Scholar
  31. Corballis, M. C. (2002). From hand to mouth: The origins of language. Princeton: Princeton University Press (See Aziz- Zadeh, L., & Ivr R. B. (2008) The humnan mirror neuron system and embodied representations. In D. Sternad (Ed.), Progress in motor control. New York: Springer).Google Scholar
  32. Corina, D. P., & Knapp, H. (2006). Sign language processing and the mirror neuron system. Cortex, 42, 529–539.CrossRefGoogle Scholar
  33. Corina, D. P., Poizner, H., Bellugi, U., Feinberg, T., Dowd, D., & O’Grady-Batch, L. (1992a). Dissociation between linguistic and nonlinguistic gestural systems: A case for compositionality. Brain and Language, 43(3), 414–447.CrossRefGoogle Scholar
  34. Corina, D. P., Vaid, J., & Bellugi, U. (1992b). The linguistic basis of left hemisphere specialization. Science, 255(5049), 1258–1260.CrossRefGoogle Scholar
  35. Corina, D. P., McBurney, S. L., Dodrill, C., Hinshaw, K., Brinkley, J., & Ojemann, G. (1999). Functional roles of Broca’s area and SMG: Evidence from cortical stimulation mapping in a deaf signer. NeuroImage, 10(5), 570–581.CrossRefGoogle Scholar
  36. Costantini, M., Galati, G., Ferretti, A., Caulo, M., Tartaro, A., Romani, G. L., et al. (2005). Neural systems underlying observation of humanly impossible movements: An FMRI study. Cerebral Cortex, 15(11), 1761–1767.CrossRefGoogle Scholar
  37. Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31(3), 1257–1267.CrossRefGoogle Scholar
  38. Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315.CrossRefGoogle Scholar
  39. Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1–2), 25–62.CrossRefGoogle Scholar
  40. Damasio, A. R. (1994). Descartes’ error. New York: Penguin.Google Scholar
  41. Damasio, A., & Damasio, H. (2006). Minding the body. Daedalus, 135(3), 15–22.CrossRefGoogle Scholar
  42. Damasio, A. R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences, 90(11), 4957.CrossRefGoogle Scholar
  43. Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213(6), 525–533.CrossRefGoogle Scholar
  44. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.CrossRefGoogle Scholar
  45. Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113–126.CrossRefGoogle Scholar
  46. de Lange, F. P., Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18(6), 454–457.CrossRefGoogle Scholar
  47. Dewey, J. (1976–1988). In J. A. Boydston (Ed.), The middle works: 1899–1924 (Vol. 9, p. 361). Carbondale: Southern Illinois University Press.Google Scholar
  48. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180.CrossRefGoogle Scholar
  49. Emmorey, K., Grabowski, T., McCullough, S., Damasio, H., Ponto, L. L., Hichwa, R. D., et al. (2003). Neural systems underlying lexical retrieval for sign language. Neuropsychologia, 41(1), 85–95.CrossRefGoogle Scholar
  50. Emmorey, K., Grabowski, T., McCullough, S., Damasio, H., Ponto, L., Hichwa, R., et al. (2004). Motor-iconicity of sign language does not alter the neural systems underlying tool and action naming. Brain and Language, 89(1), 27–37.CrossRefGoogle Scholar
  51. Emmorey, K., Grabowski, T., McCullough, S., Ponto, L. L., Hichwa, R. D., & Damasio, H. (2005). The neural correlates of spatial language in English and American Sign Language: A PET study with hearing bilinguals. NeuroImage, 24(3), 832–840.CrossRefGoogle Scholar
  52. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 2608–2611.Google Scholar
  53. Fadiga, L., Craighero, L., & D’Ausilio, A. (2009). Broca’s area in language, action, and music. Annals of the New York Academy of Sciences, 1169, 448–458.CrossRefGoogle Scholar
  54. Fan, Y. T., Decety, J., Yang, C. Y., Liu, J. L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(9), 981–988.CrossRefGoogle Scholar
  55. Feldman, J., & Narayanan, S. (2004). Embodied meaning in a neural theory of language. Brain and Language, 89(2), 385–392.CrossRefGoogle Scholar
  56. Ferrari, P. F., Gallese, V., Rizzolatti, G., & Fogassi, L. (2003). Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience, 17(8), 1703–1714.CrossRefGoogle Scholar
  57. Flaisch, T., Schupp, H. T., Renner, B., & Junghofer, M. (2009). Neural systems of visual attention responding to emotional gestures. NeuroImage, 45(4), 1339–1346.CrossRefGoogle Scholar
  58. Fogassi, L., Gallese, V., Fadiga, L., & Rizzolatti, G. (1998). Neurons responding to the sight of goal-directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Social Neuroscience Abstract, 24, 257.Google Scholar
  59. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662–667.CrossRefGoogle Scholar
  60. Foundas, A. L., Macauley, B. L., Raymer, A. M., Maher, L. M., Heilman, K. M., & Rothi, L. J. (1995). Gesture laterality in aphasic and apraxic stroke patients. Brain and Cognition, 29(2), 204–213.CrossRefGoogle Scholar
  61. Franks, D. (2010). Neurosociology: The nexus between neuroscience and social psychology. New York: Springer Press New York. I heard recently it received the ASA subjection award for the best faculty Book.Google Scholar
  62. Gallagher, H. L., & Frith, C. D. (2004). Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures. Neuropsychologia, 42(13), 1725–1736.CrossRefGoogle Scholar
  63. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. The Multiple Functions of Sensory-Motor Representations, 22(3/4), 455.Google Scholar
  64. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.CrossRefGoogle Scholar
  65. Gallese, V., Fogassi, L., Fadiga, L., & Rizzolatti, G. (2002). Action representation and the inferior parietal lobule. In W. Prinz & B. Hommel (Eds.), Attention & performance XIX. Common mechanisms in perception and action (pp. 247–266). Oxford: Oxford University Press.Google Scholar
  66. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403.CrossRefGoogle Scholar
  67. Garrison, K. A., Winstein, C. J., & Aziz-Zadeh, L. (2010). The mirror neuron system: A neural substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural Repair, 24(5), 404–412.CrossRefGoogle Scholar
  68. Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829.CrossRefGoogle Scholar
  69. Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007a). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35(4), 1674–1684.CrossRefGoogle Scholar
  70. Gazzola, V., van der Worp, H., Mulder, T., Wicker, B., Rizzolatti, G., & Keysers, C. (2007b). Aplasics born without hands mirror the goal of hand actions with their feet. Current Biology, 17(14), 1235–1240.CrossRefGoogle Scholar
  71. Gentilucci, M., & Dalla Volta, R. (2008). Spoken language and arm gestures are controlled by the same motor control system. Quarterly Journal of Experimental Psychology, 61(6), 944–957.CrossRefGoogle Scholar
  72. Gentilucci, M., Bernardis, P., Crisi, G., & Dalla Volta, R. (2006). Repetitive transcranial magnetic stimulation of Broca’s area affects verbal responses to gesture observation. Journal of Cognitive Neuroscience, 18(7), 1059–1074.CrossRefGoogle Scholar
  73. Geschwind, N. (1975). The apraxias: Neural mechanisms of disorders of learned movement. American Scientist, 63(2), 188–195.Google Scholar
  74. Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin and Review, 9(3), 558–565.CrossRefGoogle Scholar
  75. Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424–430.CrossRefGoogle Scholar
  76. Habets, B., Kita, S., Shao, Z., Ozyurek, A., & Hagoort, P. (2010). The role of synchrony and ambiguity in speech-gesture integration during comprehension. Journal of Cognitive Neuroscience, 23(8), 1845–1854.CrossRefGoogle Scholar
  77. Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. Journal of Neuroscience, 26(4), 1133–1137.CrossRefGoogle Scholar
  78. Hauser, M., & Wood, J. (2010). Evolving the capacity to understand actions, intentions, and goals. Annual Review of Psychology, 61(303–24), C1.Google Scholar
  79. Heath, M., Roy, E. A., Black, S. E., & Westwood, D. A. (2001). Intransitive limb gestures and apraxia following unilateral stroke. Journal of Clinical and Experimental Neuropsychology, 23(5), 628–642.CrossRefGoogle Scholar
  80. Heilman, K. M., Schwartz, H. D., & Geschwind, N. (1975). Defective motor learning in ideomotor apraxia. Neurology, 25(11), 1018–1020.CrossRefGoogle Scholar
  81. Heilman, K. M., Rothi, L. J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32(4), 342–346.CrossRefGoogle Scholar
  82. Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J. C. (2003). The essential role of Broca’s area in imitation. European Journal of Neuroscience, 17(5), 1123–1128.CrossRefGoogle Scholar
  83. Hesse, M. D., Sparing, R., & Fink, G. R. (2009). End or means–the “what” and “how” of observed intentional actions. Journal of Cognitive Neuroscience, 21(4), 776–790.CrossRefGoogle Scholar
  84. Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583.CrossRefGoogle Scholar
  85. Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21(7), 1229–1243.CrossRefGoogle Scholar
  86. Hotz-Boendermaker, S., Funk, M., Summers, P., Brugger, P., Hepp-Reymond, M. C., Curt, A., et al. (2008). Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. NeuroImage, 39(1), 383–394.CrossRefGoogle Scholar
  87. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15(6), 632–637.CrossRefGoogle Scholar
  88. Iacoboni, M. (2008). Mirroring People: The new science of how we connect with others. New York: Farrar, Struaa and Giroux.Google Scholar
  89. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942–951.CrossRefGoogle Scholar
  90. Iacoboni, M., & Mazziotta, J. C. (2007). Mirror neuron system: Basic findings and clinical applications. Annals of Neurology, 62(3), 213–218.CrossRefGoogle Scholar
  91. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528.CrossRefGoogle Scholar
  92. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), e79.CrossRefGoogle Scholar
  93. Jellema, T., Baker, C. I., Wicker, B., & Perrett, D. I. (2000). Neural representation for the perception of the intentionality of actions. Brain and Cognition, 44(2), 280–302.CrossRefGoogle Scholar
  94. Kaplan, J. T., & Iacoboni, M. (2006). Getting a grip on other minds: Mirror neurons, intention understanding, and cognitive empathy. Social Neuroscience, 1(3–4), 175–183.CrossRefGoogle Scholar
  95. Kaplan, J. T., Aziz-Zadeh, L., Uddin, L. Q., & Iacoboni, M. (2008). The self across the senses: An fMRI study of self-face and self-voice recognition. Social Cognitive and Affective Neuroscience, 3(3), 218–223.CrossRefGoogle Scholar
  96. Keysers, C., Wicker, B., Gazzola, V., Anton, J. L., Fogassi, L., & Gallese, V. (2004). A touching sight: SII/PV activation during the observation and experience of touch. Neuron, 42(2), 335–346.CrossRefGoogle Scholar
  97. Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11(6), 417–428.CrossRefGoogle Scholar
  98. Kilner, J. M., & Frith, C. D. (2008). Action observation: Inferring intentions without mirror neurons. Current Biology, 18(1), R32–R33.CrossRefGoogle Scholar
  99. Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846–848.CrossRefGoogle Scholar
  100. Koski, L., Wohlschlager, A., Bekkering, H., Woods, R. P., Dubeau, M. C., Mazziotta, J. C., et al. (2002). Modulation of motor and premotor activity during imitation of target-directed actions. Cerebral Cortex, 12(8), 847–855.Google Scholar
  101. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. New York: Basic Books.Google Scholar
  102. Liepelt, R., Von Cramon, D. Y., & Brass, M. (2008). How do we infer others’ goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex. NeuroImage, 43(4), 784–792.CrossRefGoogle Scholar
  103. Liew, S.-L., Han, S., & Aziz-Zadeh, L. (2010). Familiarity modulates mirror neuron and mentalizing regions during intention understanding. Human Brain Mapping, 32, 1986–1997.CrossRefGoogle Scholar
  104. Liew, S. -L., Seckin, M., & Aziz-Zadeh, L. (2011). The effects of experience on the observation of novel effectors. In Proceedings of the Cognitive Neuroscience Society annual meeting, San Francisco.Google Scholar
  105. Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.CrossRefGoogle Scholar
  106. MacSweeney, M., Woll, B., Campbell, R., Calvert, G. A., McGuire, P. K., David, A. S., et al. (2002a). Neural correlates of British sign language comprehension: Spatial processing demands of topographic language. Journal of Cognitive Neuroscience, 14(7), 1064–1075.CrossRefGoogle Scholar
  107. MacSweeney, M., Woll, B., Campbell, R., McGuire, P. K., David, A. S., Williams, S. C., et al. (2002b). Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain, 125(Pt 7), 1583–1593.CrossRefGoogle Scholar
  108. MacSweeney, M., Campbell, R., Woll, B., Giampietro, V., David, A. S., McGuire, P. K., et al. (2004). Dissociating linguistic and nonlinguistic gestural communication in the brain. NeuroImage, 22(4), 1605–1618.CrossRefGoogle Scholar
  109. McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.Google Scholar
  110. McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  111. Mehrabian, A. (1996). Manual for the balanced emotional empathy scale (BEES). Available from Albert Mehrabian, 1130, Monterey, USA.Google Scholar
  112. Meltzoff, A. N., & Prinz, W. (2002). The imitative mind: Development, evolution, and brain bases. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  113. Molnar-Szakacs, I., Wu, A. D., Robles, F. J., & Iacoboni, M. (2007). Do you see what I mean? Corticospinal excitability during observation of culture-specific gestures. PLoS One, 2(7), e626.CrossRefGoogle Scholar
  114. Mukherjee, P., Bahn, M. M., McKinstry, R. C., Shimony, J. S., Cull, T. S., Akbudak, E., et al. (2000). Differences between gray matter and white matter water diffusion in stroke: Diffusion-tensor MR imaging in 12 patients. Radiology, 215(1), 211–220.Google Scholar
  115. Newman-Norlund, R., van Schie, H. T., van Hoek, M. E., Cuijpers, R. H., & Bekkering, H. (2010). The role of inferior frontal and parietal areas in differentiating meaningful and meaningless object-directed actions. Brain Research, 1315, 63–74.CrossRefGoogle Scholar
  116. Ozyurek, A., Willems, R. M., Kita, S., & Hagoort, P. (2007). On-line integration of semantic information from speech and gesture: Insights from event-related brain potentials. Journal of Cognitive Neuroscience, 19(4), 605–616.CrossRefGoogle Scholar
  117. Paukner, A., Suomi, S. J., Visalberghi, E., & Ferrari, P. F. (2009). Capuchin monkeys display affiliation toward humans who imitate them. Science, 325(5942), 880.CrossRefGoogle Scholar
  118. Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008a). The sound of actions in apraxia. Current Biology, 18(22), 1766–1772.CrossRefGoogle Scholar
  119. Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008b). Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience, 28(12), 3030–3041.CrossRefGoogle Scholar
  120. Perkins, T., Stokes, M., McGillivray, J., & Bittar, R. (2010). Mirror neuron dysfunction in autism spectrum disorders. Journal of Clinical Neuroscience, 17(10), 1239–1243.CrossRefGoogle Scholar
  121. Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., et al. (1989). Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology, 146, 87–113.Google Scholar
  122. Perrett, D. I., Mistlin, A. J., Harries, M. H., & Chitty, A. J. (1990). Understanding the visual appearance and consequence of hand actions. In M. A. Goodale (Ed.), Vision and action: The control of grasping (pp. 163–342). Norwood: Ablex.Google Scholar
  123. Phelps, E. A., & Thomas, L. A. (2003). Race, behavior, and the brain: The role of neuroimaging in understanding complex social behaviors. Political Psychology, 24(4), 747–758.CrossRefGoogle Scholar
  124. Poizner, H., Klima, E. S., & Bellugi, U. (1987). What the hands reveal about the brain. Cambridge, MA: MIT Press.Google Scholar
  125. Pulvermuller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576–582.CrossRefGoogle Scholar
  126. Pulvermuller, F., & Hauk, O. (2006). Category-specific conceptual processing of color and form in left fronto-temporal cortex. Cerebral Cortex, 16(8), 1193.CrossRefGoogle Scholar
  127. Pulvermuller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005a). Functional links between motor and language systems. European Journal of Neuroscience, 21(3), 793–797.CrossRefGoogle Scholar
  128. Pulvermuller, F., Shtyrov, Y., & Ilmoniemi, R. (2005b). Brain signatures of meaning access in action word recognition. Journal of Cognitive Neuroscience, 17(6), 884–892.CrossRefGoogle Scholar
  129. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.CrossRefGoogle Scholar
  130. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle Scholar
  131. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996a). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131–141.CrossRefGoogle Scholar
  132. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., et al. (1996b). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246–252.CrossRefGoogle Scholar
  133. Romani, M., Cesari, P., Urgesi, C., Facchini, S., & Aglioti, S. M. (2005). Motor facilitation of the human cortico-spinal system during observation of bio-mechanically impossible movements. NeuroImage, 26(3), 755–763.CrossRefGoogle Scholar
  134. Rothi, L. J., & Heilman, K. M. (1984). Acquisition and retention of gestures by apraxic patients. Brain and Cognition, 3(4), 426–437.CrossRefGoogle Scholar
  135. Rothi, L. J., Heilman, K. M., & Watson, R. T. (1985). Pantomime comprehension and ideomotor apraxia. Journal of Neurology, Neurosurgery & Psychiatry, 48(3), 207–210.CrossRefGoogle Scholar
  136. Saxe, R. (2005). Against simulation: The argument from error. Trends in Cognitive Science, 9(4), 174–179.CrossRefGoogle Scholar
  137. Schippers, M. B., Gazzola, V., Goebel, R., & Keysers, C. (2009). Playing charades in the fMRI: Are mirror and/or mentalizing areas involved in gestural communication? PLoS One, 4(8), e6801.CrossRefGoogle Scholar
  138. Schippers, M. B., Roebroeck, A., Renken, R., Nanetti, L., & Keysers, C. (2010). Mapping the information flow from one brain to another during gestural communication. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9388–9393.CrossRefGoogle Scholar
  139. Schulte-Rüther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: A functional magnetic resonance imaging approach to empathy. Journal of Cognitive Neuroscience, 19(8), 1354–1372.CrossRefGoogle Scholar
  140. Serino, A., Giovagnoli, G., & Ladavas, E. (2009). I feel what you feel if you are similar to me. PLoS One, 4(3), e4930.CrossRefGoogle Scholar
  141. Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132(3), 417–427.Google Scholar
  142. Singer, T., & Frith, C. (2005). The painful side of empathy. Nature Neuroscience, 8(7), 845–846.CrossRefGoogle Scholar
  143. Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157–1162.CrossRefGoogle Scholar
  144. Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466.CrossRefGoogle Scholar
  145. Skipper, J. I., Goldin-Meadow, S., Nusbaum, H. C., & Small, S. L. (2009). Gestures orchestrate brain networks for language understanding. Current Biology, 19(8), 661–667.CrossRefGoogle Scholar
  146. Spunt, R. P., Satpute, A. B., & Lieberman, M. D. (2011). Identifying the what, why, and how of an observed action: An fMRI study of mentalizing and mechanizing during action observation. Journal of Cognitive Neuroscience, 23(1), 63–74.CrossRefGoogle Scholar
  147. Straube, B., Green, A., Weis, S., Chatterjee, A., & Kircher, T. (2009). Memory effects of speech and gesture binding: Cortical and hippocampal activation in relation to subsequent memory performance. Journal of Cognitive Neuroscience, 21(4), 821–836.CrossRefGoogle Scholar
  148. Straube, B., Green, A., Jansen, A., Chatterjee, A., & Kircher, T. (2010). Social cues, mentalizing and the neural processing of speech accompanied by gestures. Neuropsychologia, 48(2), 382–393.CrossRefGoogle Scholar
  149. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., et al. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17(2), 273–281.CrossRefGoogle Scholar
  150. Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self-other discrimination. Social Cognitive and Affective Neuroscience, 1(1), 65.CrossRefGoogle Scholar
  151. Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155–165.CrossRefGoogle Scholar
  152. Villarreal, M., Fridman, E. A., Amengual, A., Falasco, G., Gerscovich, E. R., Ulloa, E. R., et al. (2008). The neural substrate of gesture recognition. Neuropsychologia, 46(9), 2371–2382.CrossRefGoogle Scholar
  153. Vogt, S., Buccino, G., Wohlschläger, A. M., Canessa, N., Shah, N. J., Zilles, K., et al. (2007). Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. NeuroImage, 37(4), 1371–1383.CrossRefGoogle Scholar
  154. Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in My insula: The common neural basis of seeing and feeling disgust. Neuron, 40(3), 655–664.CrossRefGoogle Scholar
  155. Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278–289.CrossRefGoogle Scholar
  156. Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322–2333.CrossRefGoogle Scholar
  157. Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3, 39.CrossRefGoogle Scholar
  158. Willems, R. M., Hagoort, P., & Casasanto, D. (2010). Body-specific representations of action verbs: Neural evidence from right- and left-handers. Psychological Science, 21(1), 67–74.CrossRefGoogle Scholar
  159. Xu, J., Gannon, P. J., Emmorey, K., Smith, J. F., & Braun, A. R. (2009a). Symbolic gestures and spoken language are processed by a common neural system. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20664–20669.CrossRefGoogle Scholar
  160. Xu, X., Zuo, X., Wang, X., & Han, S. (2009b). Do you feel my pain? Racial group membership modulates empathic neural responses. Journal of Neuroscience, 29(26), 8525–8529.CrossRefGoogle Scholar
  161. Zaki, J., Weber, J., Bolger, N., & Ochsner, K. (2009). The neural bases of empathic accuracy. Proceedings of the National Academy of Sciences, 106, 11382–11387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.The Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations