Methods for the Determination of Heavy Metals and Metalloids in Soils

Part of the Environmental Pollution book series (EPOL, volume 22)

Abstract

This chapter explores the analytical methods currently available for the measurement of heavy metal content in soils, ranging from well-established techniques routinely applied in laboratories worldwide, to newly emerging approaches, and with emphasis on the need to select strategies that are ‘fit-for-purpose’ in terms of the information required. Included are guidelines for field sampling and for the storage of samples and avoidance of contamination. Brief information is provided on analytical techniques directly applicable to solid samples including neutron activation analysis, laser-induced breakdown spectrometry and X-ray-based methods. Suitable approaches to sample extraction for different situations are summarised (total digestion, pseudototal digestion, single and sequential extraction) together with examples of procedures involving hot-plate, block, bomb, and microwave apparatus. The use of extractants to assess (plant) bioavailability or (human) bioaccessibility of heavy metals in soils is discussed. Details are provided of the various types of atomic spectrometry that nowadays serve as ‘workhorses’ for trace metal determination in environmental chemistry, with particular emphasis on their principles, strengths, limitations and applicability. Included are flame and electrothermal atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. The chapter also provides a brief introduction to the vast topic of speciation analysis, an area of particular interest for metals that can occur in different oxidation states e.g. Cr, or that have environmentally important organometallic forms e.g. Hg. Finally, some recommendations are given on strategies that researchers should adopt whenever possible to improve the quality of their analytical data.

Keywords

Sampling Direct analytical methods Sample pre-treatment Instrumental analysis Atomic spectrometry Speciation Quality assurance 

References

  1. 1.
    Abu Zuhri, A. Z., & Voelter, W. (1998). Applications of adsorptive stripping voltammetry for the trace analysis of metals, pharmaceuticals and biomolecules. Fresenius Journal of Analytical Chemistry, 360, 1–9.Google Scholar
  2. 2.
    Ali, I., & Aboul-Enein, H. Y. (2002). Determination of metal ions in water, soil and sediment by capillary electrophoresis. Analytical Letters, 35, 2053–2076.Google Scholar
  3. 3.
    Alloway, B. J. (Ed.). (1995). Heavy metals in soils (2nd ed.). Glasgow: Blackie Academic & Professional.Google Scholar
  4. 4.
    Alvarenga, P., Goncalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilisation of a mine soil using perennial ryegrass. Science of the Total Environment, 406, 43–56.Google Scholar
  5. 5.
    Alves, S., dos Santos, M. M., & Trancoso, M. A. (2009). Evaluation of measurement uncertainties for the determination of total metal content in soils by atomic absorption spectrometry. Accreditation and Quality Assurance, 14, 87–93.Google Scholar
  6. 6.
    Anawar, H. M., Garcia-Sanchez, A., & Regina, I. S. (2008). Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere, 70, 1459–1467.Google Scholar
  7. 7.
    Anderson, P., Davidson, C. M., Littlejohn, D., Ure, A. M., Garden, L. M., & Marshall, J. (1998). Comparison of techniques for the analysis of industrial soils by atomic spectrometry. International Journal of Environmental Analytical Chemistry, 71, 19–40.Google Scholar
  8. 8.
    Antiochia, R., Campanella, L., Ghezzi, P., & Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Analytical and Bioanalytical Chemistry, 388, 947–956.Google Scholar
  9. 9.
    Arroya, L., Trejos, T., Gardinali, P. R., & Almirall, J. R. (2009). Optimisation and validation of a laser ablation inductively coupled plasma mass spectrometry methods for the routine analysis of soils and sediments. Spectrochimica Acta B, 64, 16–25.Google Scholar
  10. 10.
    Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133, 25–46.Google Scholar
  11. 11.
    Baker, S. A., Bi, M., Aucelio, R. Q., Smith, B. W., & Winefordner, J. D. (1999). Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 14, 19–26.Google Scholar
  12. 12.
    Barona, A., Romero, F., & Elejalde, C. (1995). Soil-metal interactions: Associations of macroconstituent fractions in selected soils. Journal of Hazardous Materials, 42, 289–301.Google Scholar
  13. 13.
    Basar, H. (2009). Methods for estimating phytoavailable metals in soils. Communications in Soil Science and Plant Analysis, 40, 1087–1105.Google Scholar
  14. 14.
    Berrow, M. L. (1988). Sampling of soils and plants for trace element analysis. Analytical Proceedings, 25, 116–118.Google Scholar
  15. 15.
    Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometric analysis. Analytica Chimica Acta, 424, 289–296.Google Scholar
  16. 16.
    Bi, M., Ruiz, A. M., Smith, B. W., & Winefordner, J. D. (2000). Study of solution calibration of NIST soil and glass samples by laser ablation inductively coupled plasma mass spectrometry. Applied Spectroscopy, 54, 639–644.Google Scholar
  17. 17.
    Boruvka, L., Kristoufkova, S., Kozak, J., & Huan Wei, A. (1997). Speciation of cadmium, lead and zinc in heavily polluted soil. Rostlinna Vyroba, 43, 187–192.Google Scholar
  18. 18.
    Bose, S., & Bhattacharyya, A. K. (2008). Heavy metal accumulation in wheat plants grown in soil amended with industrial sludge. Chemosphere, 70, 1264–1272.Google Scholar
  19. 19.
    Bosso, S. T., Enzweiler, J., & Angelica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilisation with phosphate. Water, Air, and Soil Pollution, 195, 257–273.Google Scholar
  20. 20.
    Brenner, I. B., & Zander, A. T. (2000). Axially and radially viewed inductively coupled plasmas – A critical review. Spectrochimica Acta B, 55, 1195–1240.Google Scholar
  21. 21.
    Bujdos, M., Kubova, J., & Stresko, V. (2000). Problems of selenium fractionation in soils rich in organic matter. Analytica Chimica Acta, 408, 103–109.Google Scholar
  22. 22.
    Burt, R., Wilson, M. A., Mays, M. D., Keck, T. J., Fillmore, M., Rodman, A. W., Alexander, E. B., & Hernandez, L. (2000). Trace and major elemental analysis applications in the US cooperative soil survey program. Communications in Soil Science and Plant Analysis, 31, 1757–1771.Google Scholar
  23. 23.
    Butler, O. T., Cook, J. M., Davidson, C. M., Harrington, C. F., & Miles, D. L. (2009). Atomic spectrometry update: Environmental analysis. Journal of Analytical Atomic Spectrometry, 24, 131–177.Google Scholar
  24. 24.
    Butler, O. T., Cairns, W. R. L., Cook, J. M., & Davidson, C. M. (2012). Atomic spectrometry update: Environmental analysis. Journal of Analytical Atomic Spectrometry, 27(2), 187–221.Google Scholar
  25. 25.
    Button, M., Watts, M. J., Cave, M. R., Harrington, C. F., & Jenkin, G. T. (2009). Earthworms and in vitro physiologically based extraction tests: Complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Environmental Geochemistry and Health, 31, 273–282.Google Scholar
  26. 26.
    Cal-Prieto, M. J., Felipe-Sotelo, M., Carlosena, A., Andrade, J. M., Lopez-Mahia, P., Muniategui, S., & Prada, D. (2002). Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990–2000. Talanta, 56, 1–51.Google Scholar
  27. 27.
    Capitelli, F., Colao, F., Provenzano, M. R., Fantoni, R., Brunetti, G., & Senesi, N. (2002). Determination of heavy metals in soils by laser-induced breakdown spectroscopy. Geoderma, 106, 45–62.Google Scholar
  28. 28.
    Carr, R., Zhang, C. S., Moles, N., & Harder, M. (2008). Identification and mapping of heavy metal pollution in soils from a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environmental Geochemistry and Health, 30, 45–52.Google Scholar
  29. 29.
    Cattani, I., Fragoulis, G., Boccelli, R., & Capri, E. (2006). Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere, 64, 1972–1979.Google Scholar
  30. 30.
    Cattani, I., Spalla, S., Beone, G. M., Del Re, A. A. M., Boccelli, R., & Trevisan, M. (2008). Characterisation of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films. Talanta, 74, 1520–1526.Google Scholar
  31. 31.
    Chen, B. L., & Beckett, R. (2001). Development of SdFFF-ETAAS for characterising soil and sediment colloids. Analyst, 126, 1588–1593.Google Scholar
  32. 32.
    Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.Google Scholar
  33. 33.
    Christian, G. (1994). Analytical chemistry. New York: Wiley.Google Scholar
  34. 34.
    Cunat, J., Fortes, F. J., & Laserna, J. J. (2009). Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyser. Analytica Chimica Acta, 633, 38–42.Google Scholar
  35. 35.
    D’Amore, J. J., Al-Abed, S. R., Scheckel, K. G., & Ryan, J. A. (2005). Methods for speciation of metals in soils: A review. Journal of Environmental Quality, 34, 1707–1745.Google Scholar
  36. 36.
    D’Angelo, J., Strasser, E., Marchevsky, E., & Perino, E. (2002). An improved method for obtaining small pressed powder pellets for the analysis by XRF. Chemia Analityczna, 47, 913–924.Google Scholar
  37. 37.
    Das, A. K., & Chakraborty, R. (1997). Electrothermal atomic absorption spectrometry in the study of metal ion speciation. Fresenius Journal of Analytical Chemistry, 357, 1–17.Google Scholar
  38. 38.
    Davidson, C. M., Hursthouse, A. S., Tognarelli, D. M., Ure, A. M., & Urquhart, G. J. (2004). Should ammonium oxalate replace hydroxylammonium chloride in step 2 of the BCR sequential extraction protocol for soil ands sediment? Analytica Chimica Acta, 508, 193–199.Google Scholar
  39. 39.
    Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, A. D., Diaz-Barrientos, E., Grcman, H., Hossack, I., Hursthouse, A. S., Madrid, L., Rodrigues, S., & Zupan, M. (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Analytica Chimica Acta, 565, 63–72.Google Scholar
  40. 40.
    Davidson, C. M., Nordon, A., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, A. C., Diaz-Barrientos, E., Grcman, H., Hodnik, A., Hossack, I., Hursthouse, A. S., Ljung, K., Madrid, F., Ottabong, E., & Rodrigues, S. (2007). Quality and comparability of measurement of potentially toxic elements in urban soils by a group of European laboratories. International Journal of Environmental Analytical Chemistry, 87, 589–601.Google Scholar
  41. 41.
    de Abreu, C. A., Van Raij, B., de Abreu, M. F., & Gonzalez, A. P. (2005). Routine soil testing to monitor heavy metals and boron. Scientia Agricola, 62, 564–571.Google Scholar
  42. 42.
    de Almeida-Bezerra, M., Arruda, M. A. Z., & Ferreira, S. L. C. (2005). Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review. Applied Spectroscopy Reviews, 40, 269–299.Google Scholar
  43. 43.
    de Gregori, I., Pinochet, H., Fuentes, E., & Potin-Gautier, M. (2001). Determination of antimony in soils and vegetables by hydride generation atomic fluorescence spectrometry and electrothermal atomic absorption spectrometry – Optimisation and characterisation of both analytical techniques. Journal of Analytical Atomic Spectrometry, 16, 172–178.Google Scholar
  44. 44.
    de Marco, R., Clarke, G., & Pejcic, B. (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19, 1987–2001.Google Scholar
  45. 45.
    Dean, J. R. (1997). Atomic absorption plasma spectrometry. Chichester: Wiley.Google Scholar
  46. 46.
    Del Castilho, P., & Rix, I. (1993). Ammonium acetate extraction for soil heavy metal speciation – Model aided soil test interpretation. International Journal of Environmental Analytical Chemistry, 51, 59–64.Google Scholar
  47. 47.
    Doelsch, E., Moussard, G., & Saint Macary, H. (2008). Fractionation of tropical soilborne heavy metals – Comparison of two sequential extraction procedures. Geoderma, 143, 168–179.Google Scholar
  48. 48.
    Dong, L. M., & Yan, X. P. (2005). On-line coupling of flow injection sequential extraction to hydride generation atomic fluorescence spectrometry for fractionation of arsenic in soils. Talanta, 65, 627–631.Google Scholar
  49. 49.
    dos Santos, J. S., dos Santos, M. L. P., Conti, M. M., dos Santos, S. N., & de Oliveira, E. (2009). Evaluation of some metals in Brazilian coffees cultivated during the process of conversion from conventional to organic agriculture. Food Chemistry, 115, 1405–1410.Google Scholar
  50. 50.
    Dubiella-Jackowska, A., Wasik, A., Przyjazny, A., & Namiesnik, J. (2007). Preparation of soil and sediment samples for determination of organometallic compounds. Polish Journal of Environmental Studies, 16, 159–176.Google Scholar
  51. 51.
    Duester, L., Diaz-Bone, R. A., Kosters, J., & Hirner, A. V. (2005). Methylated arsenic, antimony and tin species in soils. Journal of Environmental Monitoring, 7, 1186–1193.Google Scholar
  52. 52.
    Ebdon, L., Foulkes, M., & Sutton, K. (1997). Slurry nebulisation in plasmas. Journal of Analytical Atomic Spectrometry, 12, 213–229.Google Scholar
  53. 53.
    Erhart, E., Hartl, W., & Putz, B. (2008). Total soil heavy metal concentrations and mobile fractions after 10 years of biowaste-compost fertilisation. Z Planz Bodenkunde, 171, 378–383.Google Scholar
  54. 54.
    Essington, M. E., Melnichenko, G. V., Stewart, M. A., & Hull, R. A. (2009). Soil metal analysis using laser-induced breakdown spectroscopy (LIBS). Soil Science Society of America Journal, 73, 1469–1478.Google Scholar
  55. 55.
    Ezer, M. (2009). Heavy metal content of roadside soils in Kahramanmaras, Turkey. Fresenius Environmental Bulletin, 18, 704–708.Google Scholar
  56. 56.
    Farghaly, O. M., & Ghandour, M. A. (2005). Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environmental Research, 97, 229–235.Google Scholar
  57. 57.
    Feldmann, J., Salaun, P., & Lombi, E. (2009). Critical review perspective: Elemental speciation analysis methods in environmental chemistry – Moving towards methodological integration. Environmental Chemistry, 6, 275–289.Google Scholar
  58. 58.
    Felt, D. R., Bednar, A. J., & Georgian, T. (2008). The effects of grinding methods on metals concentrations in soil. Talanta, 77, 380–387.Google Scholar
  59. 59.
    Feng, M. H., Shan, Z. Q., Zhang, S. Z., & Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2 and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137, 231–240.Google Scholar
  60. 60.
    Ferreira, E. C., Anzano, J. M., Milori, D. M. P. B., Ferreira, E. J., Lasheras, R. J., Bonilla, B., Montull-Ibor, B., Casas, J., & Neto, L. M. (2009). Multiple response optimisation of laser-induced breakdown spectroscopy parameters for multi-element analysis of soil samples. Applied Spectroscopy, 63, 1081–1088.Google Scholar
  61. 61.
    Fifield, F. W., & Haines, P. J. (Eds.). (1995). Environmental analytical chemistry. London: Blackie Academic and Professional.Google Scholar
  62. 62.
    Figueiredo, E., Soares, M. E., Baptista, P., Castro, M., & Bastos, M. L. (2007). Validation of an electrothermal atomisation atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils. Journal of Agricultural and Food Chemistry, 55, 7192–7198.Google Scholar
  63. 63.
    Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.Google Scholar
  64. 64.
    Fraser, L. M., & Winefordner, J. D. (1971). Laser-excited atomic fluorescence flame spectrometry. Analytical Chemistry, 43, 1693–1696.Google Scholar
  65. 65.
    Fukushi, K., Takeda, S., Chayama, K., & Wakida, S. (1999). Application of capillary electrophoresis to the analysis of inorganic ions in environmental samples. Journal of Chromatography, 834, 349–362.Google Scholar
  66. 66.
    Geng, W., Nakajima, T., Takanashi, H., & Ohki, A. (2008). Determination of mercury in ash and soil samples by oxygen flask combustion method-cold vapour atomic fluorescence spectrometry (CVAFS). Journal of Hazardous Materials, 154, 325–330.Google Scholar
  67. 67.
    Golia, E. E., Tsiropoulos, N. G., Dimirkou, A., & Mitsios, I. (2007). Distribution of heavy metals of agricultural sols of central Greece using the modified BCR sequential extraction method. International Journal of Environmental Analytical Chemistry, 87, 1053–1063.Google Scholar
  68. 68.
    Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3 solution – Evaluation of DIN 19730. Journal of Soils and Sediments, 5, 101–106.Google Scholar
  69. 69.
    Gustavsson, B., Luthbom, K., & Lagerkvist, A. (2006). Comparison of analytical error and sampling error for contaminated soil. Journal of Hazardous Materials, 138, 252–260.Google Scholar
  70. 70.
    Haase, O., Klare, M., Krengel-Rothensee, K., & Broekaert, J. A. C. (1998). Evaluation of the determination of mercury at the trace and ultra-trace levels in the presence of high concentrations of NaCl by flow injection cold vapour atomic absorption spectrometry using SnCl2 and NaBH4 as reductands. Analyst, 123, 1219–1222.Google Scholar
  71. 71.
    Hanc, A., Tlustos, P., Szakova, J., & Habart, J. (2009). Changes in cadmium mobility during composting and after soil application. Waste Management, 29, 2282–2288.Google Scholar
  72. 72.
    Hanrahan, G., Patil, D. G., & Wang, J. (2004). Electrochemical sensors for environmental monitoring: Design, development and applications. Journal of Environmental Monitoring, 6, 657–664.Google Scholar
  73. 73.
    Harmon, R. S., De Lucia, F. C., Miziolek, A. W., McNesby, K. L., Walters, R. A., & French, P. D. (2005). Laser-induced breakdown spectroscopy (LIBS) – An emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis. Geochemistry: Exploration, Environment, Analysis, 5, 21–28.Google Scholar
  74. 74.
    Harrington, C. F., Clough, R., Hansen, H. R., Hill, S. J., Pergantis, S. A., & Tyson, J. F. (2009). Atomic spectrometry update: Elemental speciation. Journal of Analytical Atomic Spectrometry, 24, 999–1025.Google Scholar
  75. 75.
    Harris, D. C. (2003). Quantitative chemical analysis. New York: W.H. Freeman and Company.Google Scholar
  76. 76.
    Hashimoto, Y., Takaoka, M., Oshita, K., & Tanida, H. (2009). Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilisation investigated by X-ray absorption fine structure (XAFS) spectroscopy. Chemosphere, 76, 616–622.Google Scholar
  77. 77.
    Hassan, N. M., Rasmussen, P. E., Dabek-Zlotorzynska, E., Celo, V., & Chen, H. (2007). Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry: Maximising element recoveries. Water, Air, & Soil Pollution, 178, 323–334.Google Scholar
  78. 78.
    Hayyis-Hellal, J., Vallaeys, T., Garnier-Zarli, E., & Bousserrhine, N. (2009). Effects of mercury on soil microbial communities in tropical soils of French Guyana. Applied Soil Ecology, 41, 59–68.Google Scholar
  79. 79.
    He, M., Hu, B., & Jiang, Z. C. (2005). Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluoroethylene emulsion as a chemical modifier. Analytica Chimica Acta, 530, 105–112.Google Scholar
  80. 80.
    Herrera, K. K., Tognoni, E., Omenetto, N., Smith, B. W., & Winefordner, J. D. (2009). Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser induced breakdown spectroscopy: Recent results and considerations. Journal of Analytical Atomic Spectrometry, 24, 413–425.Google Scholar
  81. 81.
    Hill, S. J., Bloxham, M. J., & Worsfold, P. J. (1993). Chromatography coupled with inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry – A review. Journal of Analytical Atomic Spectrometry, 8, 499–515.Google Scholar
  82. 82.
    Hoenig, M. (2001). Preparation steps in environmental trace element analysis – Facts and traps. Talanta, 54, 1021–1038.Google Scholar
  83. 83.
    Holler, F. J., Skoog, D. A., & Crouch, S. R. (2007). Principles of instrumental analysis. Belmont: Thomson.Google Scholar
  84. 84.
    Hutchinson, S. M., & Armitage, R. P. (2009). A peat profile record of recent environmental events in the South Pennines (UK). Water, Air, and Soil Pollution, 199, 247–259.Google Scholar
  85. 85.
    Intawongse, M., & Dean, J. R. (2006). In vitro testing for assessing the oral bioaccessibility of trace elements in soils and food samples. Trends in Analytical Chemistry, 25, 876–886.Google Scholar
  86. 86.
    Jackson, M. L. (1958). Soil chemical analysis. New Jersey: Prentice-Hall.Google Scholar
  87. 87.
    Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Memon, A. R., Jalbani, N., & Shah, A. (2008). Use of sewage sludge after liming as fertiliser for maize growth. Pedosphere, 18, 203–213.Google Scholar
  88. 88.
    Jiminez, M. S., Gomez, M. T., & Castillo, J. R. (2007). Multi-element analysis of compost by laser ablation inductively coupled plasma mass spectrometry. Talanta, 72, 1141–1148.Google Scholar
  89. 89.
    Jing, Y. D., He, Z. L., Yang, X. E., & Sun, C. Y. (2008). Evaluation of soil tests for plant-available mercury in a soil-crop rotation system. Communications in Soil Science and Plant Analysis, 39, 3032–3046.Google Scholar
  90. 90.
    Johnston, S. G., Burton, E. D., Keene, A. F., Bush, R. T., Sullivan, L. A., & Isaacson, L. (2009). Pore water sampling in acid sulfate soils: A new peeper method. Journal of Environmental Quality, 38, 2474–2477.Google Scholar
  91. 91.
    Jolliff, B. L., Rockow, K. M., Korotev, R. L., & Haskin, L. A. (1996). Lithologic distribution and geologic history of the Apollo 17 site: The record in soils and small rock particles from the highland massifs. Meteoritics And Planetary Science, 31, 116–145.Google Scholar
  92. 92.
    Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122.Google Scholar
  93. 93.
    Kappen, P., Welter, E., Beck, P. H., McNamara, J. M., Moroney, K. A., Roe, G. M., Read, A., & Pigram, P. J. (2008). Time-resolved XANES speciation studies of chromium in soils during simulated contamination. Talanta, 75, 1284–1292.Google Scholar
  94. 94.
    Kartal, S., Aydin, Z., & Tokalioglu, S. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedures and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132, 80–89.Google Scholar
  95. 95.
    Ke, Y. P., Sun, Q., Yang, Z. R., Xin, J. J., Chen, L., & Hou, X. D. (2006). Determination of trace Cd and Zn in corn kernels and related soil samples by atomic absorption and chemical vapour generation atomic fluorescence after microwave-assisted digestion. Spectroscopy Letters, 39, 29–43.Google Scholar
  96. 96.
    Kebbekus, B. B., & Mitra, S. (1998). Environmental chemical analysis. London: Blackie Academic and Professional.Google Scholar
  97. 97.
    Kelepertsis, A., Argyraki, A., & Alexakis, D. (2006). Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochemistry: Exploration, Environment, Analysis, 6, 349–355.Google Scholar
  98. 98.
    Kellner, R., Mermet, J.-M., Otto, M., & Widmer, H. M. (1998). Analytical chemistry. Weinheim: Wiley-VCH.Google Scholar
  99. 99.
    Khan, M. J., & Jones, D. L. (2008). Chemical and organic immobilisation treatments for reducing phytoavailability of heavy metals in copper-mine tailings. Z Pflanzen Bodenkunde, 171, 908–916.Google Scholar
  100. 100.
    Kim, K. R., Owens, G., & Naidu, R. (2009). Heavy metal distribution, bioavailability, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Australian Journal of Soil Research, 47, 166–176.Google Scholar
  101. 101.
    Krachler, M. (2007). Environmental applications of single collector high resolution ICP-MS. J ournal of Environmental Monitoring, 9, 790–804.Google Scholar
  102. 102.
    Krishna, A. K., & Govil, P. K. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environmental Geology, 54, 1465–1472.Google Scholar
  103. 103.
    Krishna, A. K., Mohan, K. R., & Murthy, N. N. (2009). Determination of heavy metals in soil, sediments and rock by inductively coupled plasma optical emission spectrometry: Microwave-assisted digestion versus open acid digestion technique. Atomic Spectroscopy, 30, 75–81.Google Scholar
  104. 104.
    Kurfurst, U., Desaules, A., Rehnert, A., & Muntau, H. (2004). Estimation of measurement uncertainty by the budget approach for heavy metal content in soils under different land use. Accreditation and Quality Assurance, 9, 64–75.Google Scholar
  105. 105.
    Laborda, F., Ruiz-Bergueria, S., Bolea, E., & Castillo, J. R. (2009). Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis. Spectrochimica Acta B, 64, 392–398.Google Scholar
  106. 106.
    Lajunen, L. J. H. (1992). Spectrochemical analysis by atomic absorption and emission. Cambridge: Royal Society of Chemistry.Google Scholar
  107. 107.
    Lee, Y. L., Chang, C. C., & Jiang, S. J. (2003). Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil. Spectrochimica Acta B, 58, 523–530.Google Scholar
  108. 108.
    Lee, W. B., Wu, J. Y., Lee, Y. I., & Sneddon, J. (2004). Recent applications of laser-induced breakdown spectrometry: A review of material approaches. Applied Spectroscopy Reviews, 39, 27–97.Google Scholar
  109. 109.
    Liao, G. L. (2008). Assessment of soil heavy metal pollution in different mining zones of a nonferrous metal mine. Archives of Environmental Protection, 34, 93–100.Google Scholar
  110. 110.
    Lim, T. T., & Goh, K. H. (2005). Selenium extractability from a contaminated fine soil fraction: Implication on soil cleanup. Chemosphere, 58, 91–101.Google Scholar
  111. 111.
    Lindsay, W. L., & Norwell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 12, 421–428.Google Scholar
  112. 112.
    Lombi, E., & Susini, J. (2009). Synchrotron-based techniques for plant and soil science: Opportunities, challenges and future perspectives. Plant and Soil, 320, 1–35.Google Scholar
  113. 113.
    Lopez, M., Gonzales, I., & Romero, A. (2008). Trace elements contamination of agricultural soils affected by sulfide exploitation (Iberian Pyrite Belt, SW Spain). Environmental Geology, 54, 805–818.Google Scholar
  114. 114.
    Lorenz, S. E., Harmon, R. E., & McGrath, S. P. (1994). Differences between soil solutions obtained from rhizosphere and non-rhizophere soils by water displacement and soil centrifugation. European Journal of Soil Science, 45, 431–438.Google Scholar
  115. 115.
    Ma, Y. B., Lombi, E., Nolan, A. L., & McLaughlin, M. J. (2006). Determination of labile Cu in soils and isotopic exchangeability of colloidal Cu complexes. European Journal of Soil Science, 57, 147–153.Google Scholar
  116. 116.
    Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.Google Scholar
  117. 117.
    Madrid, F., Florido, M. C., & Madrid, L. (2009). Trace metal availability in soils amended with metal-fixing organic materials. Water, Air, and Soil Pollution, 200, 15–24.Google Scholar
  118. 118.
    Makinen, E., Korhonen, M., Viskari, E. L., Haapamaki, S., Jarvinen, M., & Lu, L. (2006). Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, and Soil Pollution, 171, 95–110.Google Scholar
  119. 119.
    Malandrino, M., Abollino, O., Buoso, S., Casalino, C. E., Gasparon, M., Giacomino, A., La Gioia, C., & Mentasti, E. (2009). Geochemical characterisation of Antarctic soils and lacustrine sediments from Terra Nova Bay. Microchemical Journal, 92, 21–31.Google Scholar
  120. 120.
    Maleki, N., Safavi, A., & Ramezani, Z. (1999). Determination of lead by hydride generation atomic absorption spectrometry (HGAAS) using a solid medium for generating hydride. Journal of Analytical Atomic Spectrometry, 14, 1227–1230.Google Scholar
  121. 121.
    Manno, E., Varrica, D., & Dongarra, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant in Gela, Sicily. Atmospheric Environment, 40, 5929–5941.Google Scholar
  122. 122.
    Marin, B., Chopin, E. I. B., Jupinet, B., & Gauthier, D. (2008). Comparison of microwave-assisted digestion procedures for total trace element determination in calcareous soils. Talanta, 77, 282–288.Google Scholar
  123. 123.
    Markus, J., & McBratney, A. B. (2001). A review of the contamination of soil with lead II: Spatial distribution and risk assessment of soil lead. Environment International, 27, 399–411.Google Scholar
  124. 124.
    Marques, A. P. G. C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. Journal of Hazardous Materials, 165, 174–179.Google Scholar
  125. 125.
    Matusiewicz, H. (2003). Chemical vapour generation with slurry sampling: A review of atomic absorption applications. Applied Spectroscopy Reviews, 38, 263–294.Google Scholar
  126. 126.
    Mayes, D. E., & Hussam, A. (2009). Voltammetric methods for determination and speciation of inorganic arsenic in the environment: A review. Analytica Chimica Acta, 646, 6–16.Google Scholar
  127. 127.
    McBride, M. B., Pitiranggon, M., & Kim, B. (2009). A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Science, 174, 439–444.Google Scholar
  128. 128.
    Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.Google Scholar
  129. 129.
    Mico, C., Peris, M., Sanchez, J., & Recatala, L. (2008). Trace element analysis via open-vessel or microwave-assisted digestion in calcareous Mediterranean soils. Communications in Soil Science and Plant Analysis, 39, 890–904.Google Scholar
  130. 130.
    Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemists. Harlow: Pearson Education.Google Scholar
  131. 131.
    Molina, M., Aburto, F., Calderon, R., Cazanga, M., & Escudey, M. (2009). Trace element composition of selected fertilizers used in Chile: Phosphorus fertilizers as a source of long-term soil contamination. Soil and Sediment Contamination, 18, 497–511.Google Scholar
  132. 132.
    Monterroso, C., Alvares, E., & Fernandez-Marcos, M. L. (1999). Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils. Land Degradation Development, 10, 35–47.Google Scholar
  133. 133.
    Moral, R., Gilkes, R. J., & Moreno-Caselles, J. (2002). A comparison of extractants for heavy metals in contaminated soils in Spain. Communications in Soil Science and Plant Analysis, 33, 2781–2791.Google Scholar
  134. 134.
    Morman, S. A., Plumlee, G. S., & Smith, D. B. (2009). Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Applied Geochemistry, 24, 1454–1463.Google Scholar
  135. 135.
    Morrison, J. M., Goldhaber, M. B., Lee, L., Holloway, J. M., Wanty, R. B., Wolf, R. E., & Ranville, J. F. (2009). A regional-scale study of chromium and nickel in soils of northern California, USA. Applied Geochemistry, 24, 1500–1511.Google Scholar
  136. 136.
    Mosselmans, J. F. W., Quinn, P. D., Rosell, J. R., Atkinson, K. D., Dent, A. J., Cavill, S. I., Hodson, M. E., Kirk, C. A., & Schofield, P. F. (2008). The first environmental science experiments on the new microfocus spectroscopy beamline at Diamond. Mineralogical Magazine, 72, 197–200.Google Scholar
  137. 137.
    Mossop, K. F., Davidson, C. M., Ure, A. M., Shand, C. S., & Hillier, S. J. (2009). Effect of EDTA on the fractionation and uptake by Taraxacum officinale of potentially toxic elements in soil from former chemical manufacturing sites. Plant and Soil, 320, 117–139.Google Scholar
  138. 138.
    Muntau, H. (2001). Recent developments in the field of environmental reference materials at the JRC Ispra. Fresenius Journal of Analytical Chemistry, 370, 134–141.Google Scholar
  139. 139.
    Nael, M., Khademi, H., Jalalain, A., Schulin, R., Kalbasi, M., & Sotohian, F. (2009). Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of Western Alborz, Iran. Geoderma, 152, 157–170.Google Scholar
  140. 140.
    Naftel, S. J., Martin, R. R., Macfie, S. M., Courchesne, F., & Seguin, V. (2007). An investigation of metals at the soil/root interface using synchrotron radiation analysis. Canadian Journal of Analytical Sciences and Spectroscopy, 52, 18–24.Google Scholar
  141. 141.
    Nakayama, K., Shibata, Y., & Nakamura, T. (2007). Glass beads/x-ray fluorescence analyses of 42 components in felsic rocks. X-ray Spectrometry, 36, 130–140.Google Scholar
  142. 142.
    Nunes, K. P., Munita, C. S., Vasconcellos, M. B. A., Oliveira, P. M. S., Croci, C. A., & Faleiros, F. M. (2009). Characterisation of soil samples according to their metal content. Journal of Radioanalytical and Nuclear Chemistry, 281, 359–363.Google Scholar
  143. 143.
    Ogiyama, S., Sakamoto, K., Suzuki, H., Ushio, S., Anzai, T., & Inubushi, K. (2006). Measurement of trace metals in arable soils with animal manure application using INAA and the concentrated acid digestion method. Soil Science and Plant Nutrition, 52, 114–121.Google Scholar
  144. 144.
    Oliva, S. R., & Espinosa, A. J. F. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Michrochemical Journal, 86, 131–139.Google Scholar
  145. 145.
    Oliver, I. W., Graham, M. C., MacKenzie, A. B., Ellam, R. M., & Farmer, J. G. (2008). Distribution and partitioning of depleted uranium (DU) in soils at weapons test ranges – Investigations combining the BCR extraction scheme and isotopic analysis. Chemosphere, 72, 932–939.Google Scholar
  146. 146.
    Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van de Weile, T., Wragg, J., Rompelberg, C. J. M., Sips, A. J. A. M., & Van Wijnen, J. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36, 3326–3334.Google Scholar
  147. 147.
    Palumbo-Roe, B., Cave, M. R., Klinck, B. A., Wragg, J., Taylor, H., O’Donnell, K. E., & Shaw, R. A. (2005). Bioaccessibility of arsenic in soils developed over Jurassic ironstones in eastern England. Environmental Geochemistry and Health, 27, 121–130.Google Scholar
  148. 148.
    Papassiopi, N., Kontoyianni, A., Vanuanidou, K., & Xenidis, A. (2009). Assessment of chromium biostabilisation in contaminated soils using standard leaching and sequential extraction techniques. Science of the Total Environment, 407, 925–936.Google Scholar
  149. 149.
    Parat, C., Leveque, J., Dousset, S., Chaussod, R., & Andreux, F. (2003). Comparison of three sequential extraction procedures used to study trace element distribution in an acidic sandy soil. Analytical and Bioanalytical Chemistry, 376, 243–247.Google Scholar
  150. 150.
    Peijnenburg, W. J. G. M., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environmental within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179.Google Scholar
  151. 151.
    Peltola, P., & Astrom, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health, 25, 397–419.Google Scholar
  152. 152.
    Pereira, E., Rodriguez, S. M., Otero, M., Valega, M., Lopes, C. B., Pato, P., Coelho, J. P., Lillebo, A. I., Pardal, M. A., Rocha, R., & Duarte, A. C. (2008). Evaluation of an interlaboratory proficiency testing exercise for total mercury in environmental samples of soil, sediment and fish tissue. Trends in Analytical Chemistry, 27, 959–970.Google Scholar
  153. 153.
    Perez, A. L., & Anderson, K. A. (2009). DGT estimates cadmium accumulation in wheat and potato from phosphate fertiliser applications. Science of the Total Environment, 407, 5096–5103.Google Scholar
  154. 154.
    Petit, M. D., & Rucandio, M. I. (1999). Sequential extractions for determination of cadmium distribution in coal fly ash, soil and sediment samples. Analytica Chimica Acta, 401, 283–291.Google Scholar
  155. 155.
    Petrov, P. K., Serafimovska, J. M., Arpadjan, S., Tsalev, D. L., & Stafilov, T. (2008). Influence of EDTA, carboxylic acids, amino- and hydroxocarboxylic acids and monosaccharides on the generation of arsines in hydride generation atomic absorption spectrometry. Central European Journal of Chemistry, 6, 216–221.Google Scholar
  156. 156.
    Pokrovsky, O. S., Schott, J., & Dupre, B. (2006). Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochimica et Cosmochimica Acta, 70, 3239–3260.Google Scholar
  157. 157.
    Prohaska, I., Wenzel, W. W., & Stingeder, G. (2005). ICP-MS based tracing of metal sources and mobility in a soil depth profile via the isotopic variation of Sr and Pb. International Journal of Mass Spectrometry, 242, 243–250.Google Scholar
  158. 158.
    Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152, 330–341.Google Scholar
  159. 159.
    Quenea, K., Larny, I., Winterton, P., Bermond, A., & Dumat, C. (2009). Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma, 149, 217–223.Google Scholar
  160. 160.
    Quevauviller, P. (1996). Certified reference materials for the quality control of total and extractable trace element determinations in soils and sludges. Communications in Soil Science and Plant Analysis, 27, 403–418.Google Scholar
  161. 161.
    Quevauviller, P., Lachica, M., Barahona, E., Gomez, A., Rauret, G., Ure, A., & Muntau, H. (1998). Certified reference material for the quality control of EDTA- and DTPA-extractable metal contents in calcareous soil (CRM 600). Fresenius Journal of Analytical Chemistry, 360, 505–511.Google Scholar
  162. 162.
    Radu, T., & Diamond, D. (2009). Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 171, 1168–1171.Google Scholar
  163. 163.
    Ramsey, M. H. (1997). Measurement uncertainty arising from sampling: Implications for the objectives of geoanalysis. Analyst, 122, 1255–1260.Google Scholar
  164. 164.
    Rao, D. V. K. N. (2005). Evaluation of soil extractants in terms of growth. Communications in Soil Science and Plant Analysis, 36, 1513–1523.Google Scholar
  165. 165.
    Rao, C. R. M., Sahuquillo, A., & Lopez-Sanchez, J. F. (2008). A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189, 291–333.Google Scholar
  166. 166.
    Raposo, J. L., de Oliveira, S. R., Caldas, N. M., & Neto, J. A. G. (2008). Evaluation of alternative lines of Fe for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry. Analytica Chimica Acta, 627, 198–202.Google Scholar
  167. 167.
    Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.Google Scholar
  168. 168.
    Razic, S. S., Dogo, S. M., & Slavkovic, L. J. (2006). Multivariate characterisation of herbal drugs and rhizosphere soil samples according to their metallic content. Microchemical Journal, 84, 93–101.Google Scholar
  169. 169.
    Reeve, R. N. (1994). Environmental analysis. Chichester: Wiley.Google Scholar
  170. 170.
    Resano, M., Vanhaecke, F., & de Loos-Vollebregt, M. T. C. (2008). Electrothermal vaporisation for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry – A critical review with focus on solid sampling and slurry analysis. Journal of Analytical Atomic Spectrometry, 23, 1450–1475.Google Scholar
  171. 171.
    Roberts, S. M. (2004). Incorporating information on bioavailability of soil-borne chemicals into human health risk assessments. Human and Ecological Risk Assessment, 10, 6331–6635.Google Scholar
  172. 172.
    Rousseau, R. M. (2006). Corrections for matrix effects in X-ray fluorescence analysis – A tutorial. Spectrochimica Acta B, 61, 759–777.Google Scholar
  173. 173.
    Rubio, R., & Ure, A. M. (1993). Approaches to sampling and sample pre-treatments for metal speciation in soils and sediments. International Journal of Environmental Analytical Chemistry, 51, 205–217.Google Scholar
  174. 174.
    Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30, 422–430.Google Scholar
  175. 175.
    Ruiz-Chancho, M. J., Lopez-Sanchez, J. F., & Rubio, R. (2007). Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Analytical and Bioanalytical Chemistry, 387, 627–635.Google Scholar
  176. 176.
    Sahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., & Ure, A. M. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.Google Scholar
  177. 177.
    Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22, 152–159.Google Scholar
  178. 178.
    Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P., & Purohit, K. K. (2002). Trace element estimation in soils: An appraisal of ED-XRF techniques using group analysis scheme. Journal of Trace and Microprobe Techniques, 20, 539–551.Google Scholar
  179. 179.
    Sandroni, V., Smith, C. M. M., & Donovan, A. (2003). Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talanta, 60, 715–723.Google Scholar
  180. 180.
    Santos, M. C., & Nobrega, J. A. (2006). Slurry nebulisation in plasmas for analysis of inorganic materials. Applied Spectroscopy Reviews, 41, 427–448.Google Scholar
  181. 181.
    Sasmaz, A., & Yaman, M. (2006). Distribution of chromium, nickel and cobalt in different parts of plant species and soil in mining area of Keban, Turkey. Communications in Soil Science and Plant Analysis, 37, 1845–1857.Google Scholar
  182. 182.
    Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72.Google Scholar
  183. 183.
    Scarciglia, F., Barca, D., De Rosa, R., & Pulice, I. (2009). Application of laser ablation ICP-MS and traditional micromorphological techniques to the study of an Alfisol (Sardinia, Italy) in thin sections: Insights into trace element distribution. Geoderma, 152, 113–126.Google Scholar
  184. 184.
    Scheckel, K. G., Chaney, R. L., Basta, N. T., & Ryan, J. A. (2009). Advances in assessing bioavailability of metal(loids) in contaminated soils. Advances in Agronomy, 104, 1–52.Google Scholar
  185. 185.
    Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312.Google Scholar
  186. 186.
    Scholz, R. W., Nothbaum, N., & May, T. W. (1994). Fixed and hypothesis-guided soil sampling methods – Principles, strategies and examples. In B. Markert (Ed.), Environmental sampling for trace analysis (pp. 335–345). Weinheim: VCH.Google Scholar
  187. 187.
    Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Science of the Total Environment, 263, 11–22.Google Scholar
  188. 188.
    Senesi, G. S., Dell’Aglio, M., Gaudiuso, R., De Giacomo, A., Zaccone, C., De Pascale, O., Miano, T. M., & Capitelli, M. (2009). Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS) with special emphasis on chromium. Environmental Research, 109, 413–420.Google Scholar
  189. 189.
    Sharp, B. L. (1988). Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry – A review 1 Nebulizers. Journal of Analytical Atomic Spectrometry, 3, 613–652.Google Scholar
  190. 190.
    Sharp, B. L. (1988). Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry – A review 2 Spray chambers. Journal of Analytical Atomic Spectrometry, 3, 939–965.Google Scholar
  191. 191.
    Shaw, M. J., & Haddad, P. R. (2004). The determination of trace metal pollutants in environmental matrices using ion chromatography. Environment International, 30, 403–431.Google Scholar
  192. 192.
    Shibata, Y., Suyama, J., Kitano, M., & Nakamura, T. (2009). X-ray fluorescence analysis of Cr, As, Se, Cd, Hg and Pb in soil using pressed powder pellet and loose powder methods. X-ray Spectrometry, 38, 410–416.Google Scholar
  193. 193.
    Soto-Jimenez, M. F., & Flegal, A. R. (2009). Origin of lead in the Gulf of California Ecoregion using stable isotope analysis. Journal of Geochemical Exploration, 101, 209–217.Google Scholar
  194. 194.
    Starr, M., Lindroos, A. J., Ukonmaanaho, L., Tarvainen, T., & Tanskanen, H. (2003). Weathering release of heavy metals from soil in comparison to deposition, litterfall and leaching fluxes in a remote, boreal coniferous forest. Applied Geochemistry, 18, 607–613.Google Scholar
  195. 195.
    Sturgeon, R. E. (2000). Current practice and recent developments in analytical methodology for trace element analysis of soils, plants and water. Communications in Soil Science and Plant Analysis, 31, 1479–1512.Google Scholar
  196. 196.
    Svete, O., Milacic, R., & Pihlar, B. (2000). Optimisation of an extraction procedure for determination of total water-soluble Zn, Pb and Cs and their species in soils from a mining area. Annali di Chimica, 90, 323–334.Google Scholar
  197. 197.
    Szakova, J., Tlustos, P., Goessler, W., Frkova, Z., & Najmanova, J. (2009). Mobility of arsenic and its compounds in soil and soil solution: The effect of soil pre-treatment and extraction methods. Journal of Hazardous Materials, 172, 1244–1251.Google Scholar
  198. 198.
    Takeda, A., Tsukada, H., Takaku, Y., Hisamatsu, S., Inaba, J., & Nanzyo, M. (2006). Extractability of major and trace elements from agricultural soils using chemical extraction methods: Application for phytoavailability assessment. Journal of Soil Science and Plant Nutrition, 52, 406–417.Google Scholar
  199. 199.
    Takeda, A., Tsukada, H., Takaku, Y., & Hisamatsu, S. (2009). Fractionation of metal complexes with dissolved organic matter in a rhizosphere soil solution of a humus-rich Andosol using size exclusion chromatography with inductively coupled plasma mass spectrometry. Journal of Soil Science and Plant Nutrition, 55, 349–357.Google Scholar
  200. 200.
    Tariq, S. R., Shah, M. H., Shaheen, N., Khalique, A., Manzoor, S., & Jaffar, M. (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: A case study from Peshwar, Pakistan. Journal of Environmental Management, 79, 20–29.Google Scholar
  201. 201.
    Templeton, D. M., Ariese, F., Cornelis, R., Danielsson, L. G., Muntau, H., Van Leeuwen, H. P., & Lobinski, R. (2000). Guidelines for terms related to chemical speciation and fractionation of elements: Definitions, structural aspects and methodological approaches (IUPACrecommendations 2000). Pure and Applied Chemistry, 72, 1453–1470.Google Scholar
  202. 202.
    Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.Google Scholar
  203. 203.
    Tokalioglu, S., Kartal, S., & Gunes, A. A. (2001). Determination of heavy metals in soil extracts and plant tissues around a zinc smelter. International Journal of Environmental Analytical Chemistry, 80, 201–217.Google Scholar
  204. 204.
    Tokalioglu, S., Kartal, S., & Gunes, A. A. (2004). Statistical evaluation of bioavailability of metals to grapes growing in contaminated vineyard soils using single extractants. International Journal of Environmental Analytical Chemistry, 84, 691–705.Google Scholar
  205. 205.
    Tomiyasu, T., Nagano, A., Sakamoto, H., & Yonehara, N. (1996). Differential determination of organic mercury and inorganic mercury in sediment, soil and aquatic organisms by cold vapour atomic absorption spectrometry. Analytical Sciences, 12, 477–481.Google Scholar
  206. 206.
    Tseng, Y. J., Liu, C. C., & Jiang, S. J. (2007). Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of As and Se in soil and sludge. Analytica Chimica Acta, 588, 173–178.Google Scholar
  207. 207.
    Uprety, D., Hejcman, M., Szakova, J., Kunzova, E., & Tlustot, P. (2009). Concentrations of nutrients in arable soil after long-term application of organic and inorganic fertilisers. Nutrient Cycling in Agroecosystems, 85, 241–252.Google Scholar
  208. 208.
    Ure, A. M. (1991). Trace element speciation in soils, soil extracts and solutions. Microchimica Acta, 2, 49–57.Google Scholar
  209. 209.
    Ure, A. M. (1994). The effects of drying on element concentrations and speciation in soils and sediments. Quimica Analitica, 13, S64–S69.Google Scholar
  210. 210.
    Ure, A. M., & Davidson, C. M. (2002). Chemical speciation in the environment. Oxford: Blackwell.Google Scholar
  211. 211.
    Ure, A. M., & Shand, C. A. (1974). Determination of mercury in soils and related materials by cold vapour atomic absorption spectrometry. Analytica Chimica Acta, 72, 63–77.Google Scholar
  212. 212.
    Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: And account of the improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.Google Scholar
  213. 213.
    Valsecchi, S. M., & Polesello, S. (1999). Analysis of inorganic species in environmental samples by capillary electrophoresis. Journal of Chromatography. A, 834, 363–385.Google Scholar
  214. 214.
    Vanhoof, C., Corthouts, V., & Tirez, K. (2004). Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils. Journal of Environmental Monitoring, 6, 344–350.Google Scholar
  215. 215.
    Vodyanitskii, Y. N., Vasil’ev, A. A., Morgun, E. G., & Rumyantseva, K. A. (2007). Selectivity of reagents used to extract iron from soil. Eurasian Soil Science, 40, 1076–1086.Google Scholar
  216. 216.
    Voegelin, A., Weber, F. A., & Kretzschmar, R. (2007). Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 71, 5804–5820.Google Scholar
  217. 217.
    Wagner, G., Mohr, M. E., Sprengart, J., Desaules, A., Muntau, H., Theocharopoulos, S., & Quevauviller, P. (2001). Objectives, concept and design of the CEEM soil project. Science of the Total Environment, 264, 3–15.Google Scholar
  218. 218.
    Wang, X., Liu, Y. G., Zeng, G. M., Chai, L. Y., Xiao, X., Song, X. C., & Min, Z. Y. (2008). Pedological characteristics of Mn mine tailings and metal accumulation in native plants. Chemosphere, 72, 1260–1266.Google Scholar
  219. 219.
    Wang, S. L., Nan, Z. R., Liu, X. W., Li, Y., Qin, S., & Ding, H. X. (2009). Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma, 152, 290–295.Google Scholar
  220. 220.
    West, M., Ellis, A. T., Potts, P. J., Streli, C., Vanhoof, C., Wegrzynek, D., & Wobrauschek, P. (2009). Atomic spectrometry update: X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 24, 1289–1326.Google Scholar
  221. 221.
    Williams, T. M., Rawlins, B. G., Smith, B., & Breward, N. (1998). In-vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, southern Thailand: A basis for improved human health risk assessment. Environmental Geochemistry and Health, 20, 169–177.Google Scholar
  222. 222.
    Wilson, M. A., Burt, R., Lynn, W. C., & Klameth, L. C. (1997). Trace elemental analysis digestion method evaluation on soils and clays. Communications in Soil Science and Plant Analysis, 28, 407–426.Google Scholar
  223. 223.
    Winefordner, J. D., & Elser, R. C. (1971). Atomic fluorescence spectrometry. Analytical Chemistry, 43, 24A–42A.Google Scholar
  224. 224.
    Wobrauschek, P. (2007). Total reflection x-ray fluorescence analysis – A review. X-ray Spectrometry, 36, 289–300.Google Scholar
  225. 225.
    Wong, J. W. C., & Selvan, A. (2009). Growth and accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost. Archives of Environmental Contamination and Toxicology, 57, 515–523.Google Scholar
  226. 226.
    Wragg, J., & Cave, M. R. (2002). In vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review (R&D Technical report P5-062/TR/01). British Geological Survey, Environment Agency (UK).Google Scholar
  227. 227.
    Wragg, J., Cave, M. R., Taylor, H., Basta, N., Brandon, E., Casteel, S., Gron, C., Ommen, A., & Van de Wiele, T. (2009). Inter-laboratory trial of a unified bioaccessibility procedure. (Open report OR/07/027). British Geological Survey (UK).Google Scholar
  228. 228.
    Yang, Q. W., Lan, C. Y., & Shy, W. S. (2008). Copper and zinc in a paddy field and their potential ecological impacts affected by wastewater from a lead/zinc mine, P.R. China. Environmental Monitoring and Assessment, 147, 65–73.Google Scholar
  229. 229.
    Yilmaz, F., Yilmaz, Y. Z., Ergin, M., Erkol, A. Y., Muftuoglu, A. E., & Karakelle, B. (2003). Heavy metal concentrations in surface soils of Izmit Gulf region, Turkey. Journal of Trace and Microprobe Techniques, 21, 523–531.Google Scholar
  230. 230.
    Yip, Y. C., & Tong, W. F. (2009). Assessing laboratory performance in intercomparisons for inorganic analysis. Trends in Analytical Chemistry, 28, 1276–1294.Google Scholar
  231. 231.
    Yuan, C. G., He, B., Gao, E. L., Lu, J. X., & Jiang, G. B. (2007). Evaluation of extraction methods for arsenic speciation in polluted soil and rotten ore by HPLC-HG-AFS analysis. Microchimica Acta, 159, 175–182.Google Scholar
  232. 232.
    Zhang, N., Sun, G. L., & Ma, H. R. (2007). Determination of ultra-trace selenium in mineral samples by hydride generation atomic fluorescence spectrometry with pressurised PTFE vessel acid digestion. Minerals Engineering, 20, 1397–1400.Google Scholar
  233. 233.
    Zhang, X. Y., Tang, L. S., Zhang, G., & Wu, H. D. (2009). Heavy metal contamination in a typical mining town of a minority and mountain area, South China. Bulletin of Environmental Contamination and Toxicology, 82, 31–38.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations