Advertisement

Selenium

  • Olav Albert Christophersen
  • Graham Lyons
  • Anna HaugEmail author
  • Eiliv Steinnes
Chapter
Part of the Environmental Pollution book series (EPOL, volume 22)

Abstract

Selenium (Se) is both an essential micronutrient for animals and humans and potentially toxic at relatively low intakes. Total soil Se is usually low (0.01–2 mg/kg), but parts of China, India and the USA have toxic soil Se levels. Available soil Se is poorly correlated with total soil Se and is highly variable, both locally and globally. The plant availability of Se in soil depends on the major Se species present and on soil characteristics, including the quantity of sorption components (aluminium and iron oxide/hydroxides), pH and redox status. Also, the presence of anions competing for the same sorption surfaces (including sulphate, phosphate and organic anions) affects root uptake and retention of Se in soil, and microbial activity is important for Se interactions with organic matter. Depletion of Se and S is common in soils of Sub-Saharan Africa, due to soil erosion, leaching and volatilisation through burning. The only viable long-term solution, especially for farmers who cannot afford commercial fertilisers, is to re-establish agricultural ecosystems that are closer to the natural ecosystems they replaced. Selenium is not considered to be essential for higher plants; however, it has numerous health roles in humans and animals, mostly mediated by Se-dependent enzymes. Although diseases associated with profound Se deficiency (Keshan disease, Kaschin-Beck disease and myxoedema) are rare, suboptimal intake is widespread and may increase risk of heavy metal toxicity, certain cancers, cardiovascular diseases and HIV disease. It is possible to biofortify food crops using selenate, but a high proportion is retained in the soil, and more targeted supplementation may be preferable to conserve this scarce micronutrient.

Keywords

Selenium Micronutrient Selenate Selenite Redox pH Availability Se deficiency Seleniferous Adsorption Selenide 

References

  1. 1.
    Abrams, M. M., Burau, R. G., & Zasoski, R. J. (1990). Organic selenium distribution in selected California soils. Soil Science Society of America Journal, 54, 979–982.Google Scholar
  2. 2.
    Allen, L., de Benoist, B., & Dary, O. (2006). Guidelines on food fortification with micronutrients. Geneva: WHO/FAO.Google Scholar
  3. 3.
    Amouroux, D., Liss, P. S., Tessier, E., Hamren-Larsson, M., & Donard, O. F. X. (2001). Role of oceans as biogenic sources of selenium. Earth and Planetary Science Letters, 189, 277–283.Google Scholar
  4. 4.
    Andren, A. W., Klein, D. H., & Talmi, Y. (1975). Selenium in coal-fired steam plant emissions. Environmental Science and Technology, 9(9), 856–858.Google Scholar
  5. 5.
    Annegers, J. F. (1973). The protein-calorie ratio of West African diets and their relationship to protein calorie malnutrition. Ecology of Food and Nutrition, 2, 225–235.Google Scholar
  6. 6.
    Annegers, J. F. (1974). Protein quality of West African foods. Ecology of Food and Nutrition, 3, 125–130.Google Scholar
  7. 7.
    Aviado, D. M., Drimal, J., Watanabe, T., & Lish, P. M. (1975). Cardiac effects of sodium selenite. Cardiology, 60(2), 113–120.Google Scholar
  8. 8.
    Banuelos, G. S. (2009). Phytoremediation of selenium-contaminated soil and water produces biofortified products and new agricultural byproducts. In G. S. Banuelos & Z.-Q. Lin (Eds.), Development and uses of biofortified agricultural products (pp. 57–70). Boca Raton: CRC Press.Google Scholar
  9. 9.
    Banuelos, G. S., Lin, Z.-Q., Wu, L., & Terry, N. (2002). Phytoremediation of selenium-contaminated soils and waters: Fundamentals and future prospects. Reviews on Environmental Health, 17, 291–306.Google Scholar
  10. 10.
    Barja, G. (2004). Aging in vertebrates, and the effect of caloric restriction: A mitochondrial free radical production-DNA damage mechanism? Biological Reviews of the Cambridge Philosophical Society, 79(2), 235–251.Google Scholar
  11. 11.
    Barr-Yosef, B., & Meek, D. (1987). Selenium sorption by kaolinite and montmorillonite. Soil Science, 144, 11–19.Google Scholar
  12. 12.
    Baum, M. K., Shor-Posner, G., Lai, S., Zhang, G., Lai, H., Fletcher, M. A., Sauberlich, H., & Page, J. B. (1997). High risk of HIV-related mortality is associated with selenium deficiency. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 15(5), 370–374.Google Scholar
  13. 13.
    Benjamin, M. M. (1983). Adsorption and surface precipitation on amorphous iron oxyhydroxide. Environmental Science and Technology, 17, 686–692.Google Scholar
  14. 14.
    Boitani, C., & Puglisi, R. (2008). Selenium, a key element in spermatogenesis and male fertility. Advances in Experimental Medicine and Biology, 636, 65–73.Google Scholar
  15. 15.
    Brand, M. D. (2010). The sites and topology of mitochondrial superoxide production. Experimental Gerontology, 45, 466–472.Google Scholar
  16. 16.
    Briviba, K., Kissner, R., Koppenol, W. H., & Sies, H. (1998). Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chemical Research in Toxicology, 11(12), 1398–1401.Google Scholar
  17. 17.
    Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., Hawkesford, M. J., McGrath, S. P., Zhao, F.-J., Breward, N., Harriman, M., & Tucker, M. (2006). Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 65, 169–181.Google Scholar
  18. 18.
    Bruggeman, C., Maes, A., & Vancluysen, J. (2007). The interaction of dissolved Boom Clay and Gorleben humic substances with selenium oxyanions (selenite and selenate). Applied Geochemistry, 22(7), 1371–1379.Google Scholar
  19. 19.
    Bryant, R. W., Bailey, J. M., King, J. C., & Levander, O. A. (1981). Altered platelet glutathione peroxidase activity and arachidonic acid metabolism during selenium repletion in a controlled human study. In J. E. Spallholz, J. L. Martin, & H. E. Ganther (Eds.), Selenium in biology and medicine (pp. 395–399). Westport: AVI Publishing Company, Inc.Google Scholar
  20. 20.
    Buketov, E. A., Ugorets, M. Z., & Tashinkin, A. S. (1964). Solubility products and entropies of sulphides, selenides and tellurides. Russian Journal of Inorganic Chemistry, 9, 292–294.Google Scholar
  21. 21.
    Burk, R. F., & Hill, K. E. (1994). Selenoprotein P. A selenium-rich extracellular glycoprotein. Journal of Nutrition, 124(10), 1891–1897.Google Scholar
  22. 22.
    Cao, Z., Lindsay, J. G., & Isaacs, N. W. (2007). Mitochondrial peroxiredoxins. Subcellular Biochemistry, 44, 295–315.Google Scholar
  23. 23.
    Caro, P., Gomez, J., Sanchez, I., Naudi, A., Ayala, V., López-Torres, M., Pamplona, R., & Barja, G. (2009). Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Research, 12, 421–434.Google Scholar
  24. 24.
    Cary, E. E., & Allaway, W. H. (1969). Stability of different forms of selenium applied to low-selenium soils. Soil Science Society of America Proceedings, 33, 571–574.Google Scholar
  25. 25.
    Christophersen, O. A. (1983). Sporelementer i norsk kosthold og deres helsemessige betydning. Utredning [Trace elements in the Norwegian diet and their health significance] (Report in Norwegian). Oslo: Statens Ernæringsråd [National Nutrition Council].Google Scholar
  26. 26.
    Christophersen, O. A. (1994). Some aspects of the biogeochemical behavior of manganese as compared to other elements. In J. Låg (Ed.), Geomedical problems related to aluminium, iron and manganese (pp. 85–89). Oslo: The Norwegian Academy of Science and Letters.Google Scholar
  27. 27.
    Christophersen, O. A., & Haug, A. (2005). Possible roles of oxidative stress, local circulatory failure and nutrition factors in the pathogenesis of hypervirulent influenza: Implications for therapy and global emergency preparedness. Microbial Ecology in Health and Disease, 17, 189–199.Google Scholar
  28. 28.
    Clark, L. C., Combs, G. F., Jr., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., Krongrad, A., Lesher, J. L., Jr., Park, H. K., Sanders, B. B., Jr., Smith, C. L., & Taylor, J. R. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of cancer study group. Journal of the American Medical Association, 276, 1957–1963.Google Scholar
  29. 29.
    Combs, G. F. (2001). Selenium in global food systems. British Journal of Nutrition, 85, 517–547.Google Scholar
  30. 30.
    Combs, G. F., & Combs, S. B. (1986). The role of selenium in nutrition. New York: Academic.Google Scholar
  31. 31.
    Contempré, B., de Escobar, G. M., Denef, J. F., Dumont, J. E., & Many, M. C. (2004). Thiocyanate induces cell necrosis and fibrosis in selenium- and iodine-deficient rat thyroids: A potential experimental model for myxedematous endemic cretinism in central Africa. Endocrinology, 145(2), 994–1002.Google Scholar
  32. 32.
    Contempre, B., Le Moine, O., Dumont, J. E., Denef, J. F., & Many, M. C. (1996). Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta). Molecular and Cellular Endocrinology, 124(1–2), 7–15.Google Scholar
  33. 33.
    Cooke, T. D., & Bruland, K. W. (1987). Aquatic chemistry of selenium: Evidence of biomethylation. Environmental Science and Technology, 21, 1214–1219.Google Scholar
  34. 34.
    Coppin, F., Chabroullet, C., & Martin-Garin, A. (2009). Selenite interactions with some particulate and mineral fractions isolated from a natural grassland soil. European Journal of Soil Science, 60, 369–376.Google Scholar
  35. 35.
    Coppin, F., Chabroullet, C., Martin-Garin, A., Balesdent, J., & Gaudet, J. P. (2006). Methodological approach to assess the effect of soil ageing on selenium behaviour: First results concerning mobility and solid fractionation of selenium. Biology and Fertility of Soils, 42, 379–386.Google Scholar
  36. 36.
    Davies, E. B., & Watkinson, J. H. (1966). Uptake of native and applied selenium by pasture species. II. Effects of sulphate and of soil type on uptake by clover. New Zealand Journal of Agricultural Research, 9, 641–652.Google Scholar
  37. 37.
    Davis, J. A., & Leckie, J. O. (1980). Surface ionozation and complexation at the oxide-water interface. 3. Adsorption of anions. Journal of Colloid and Interface Science, 74, 32–43.Google Scholar
  38. 38.
    Dhillon, K. S., Dhillon, S. K., & Thind, H. S. (2008). Evaluation of different agroforestry tree species for their suitability in the phytoremediation of seleniferous soils. Soil Use and Management, 24, 208–216.Google Scholar
  39. 39.
    Dhillon, S. K., & Dhillon, K. S. (2000). Selenium adsorption in soils as influenced by different anions. Journal of Plant Nutrition and Soil Science, 163, 577–582.Google Scholar
  40. 40.
    Duntas, L. H. (2009). Selenium and inflammation: Underlying anti-inflammatory mechanisms. Hormone and Metabolic Research, 41, 443–447.Google Scholar
  41. 41.
    Ellis, D. R., & Salt, D. E. (2003). Plants, selenium and human health. Current Opinion in Plant Biology, 6, 273–279.Google Scholar
  42. 42.
    Elrashidi, M. A., Adriano, D. C., Workman, S. M., & Lindsay, W. L. (1987). Chemical-equilibria of selenium in soils – A theoretical development. Soil Science, 144, 141–152.Google Scholar
  43. 43.
    Enwezor, W. O. (1976). Sulphur deficiencies in soils of southeastern Nigeria. Geoderma, 15, 401–411.Google Scholar
  44. 44.
    Flores-Mateo, G., Navas-Acien, A., Pastor-Barriuso, R., & Guallar, E. (2006). Selenium and coronary heart disease: A meta-analysis. American Journal of Clinical Nutrition, 84, 762–773.Google Scholar
  45. 45.
    Fordyce, F. (2005). Selenium deficiency and toxicity in the environment. In O. Selinus, B. Alloway, J. Centeno, R. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology (V). London: Elsevier.Google Scholar
  46. 46.
    Frankenberger, W. T., Jr., & Karlson, U. (1989). Environmental factors affecting microbial production of dimethylselenide in a selenium-contaminated sediment. Soil Science Society of America Journal, 53, 1435–1442.Google Scholar
  47. 47.
    Frost, D. V. (1981). Selenium and vitamin E as antidotes against heavy metal toxicities. In J. E. Spallholz, J. L. Martin, & H. E. Ganther (Eds.), Selenium in biology and medicine (pp. 490–498). Westport: AVI Publishing Company, Inc.Google Scholar
  48. 48.
    Frost, D. V., & Ingvoldstad, G. (1975). Ecological aspects of selenium and tellurium in human and animal health. Chemica Scripta, 8A, 1–13.Google Scholar
  49. 49.
    Ganther, H. E., Hafeman, D. G., Lawrence, R. A., Serfass, R. E., & Hoekstra, W. G. (1976). Selenium and glutathione peroxidase in health and disease – A review. In A. S. Prasad & D. Oberleas (Eds.), Trace elements in human health and disease: Vol. II. Essential and toxic elements (V). New York: Academic Press.Google Scholar
  50. 50.
    Gissel-Nielsen, G. (1973). Uptake and distribution of added selenite and selenate by barley and red clover as influenced by sulphur. Journal of the Science of Food and Agriculture, 24, 649–655.Google Scholar
  51. 51.
    Gissel-Nielsen, G., & Hamdy, A. A. (1978). Plant uptake of selenium and LSE-values in different soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 141, 67–75.Google Scholar
  52. 52.
    Gladney, E. S., Zoller, W. H., Jones, A. G., & Gordon, G. E. (1974). Composition and size distributions of atmospheric particulate matter in the Boston area. Environmental Science and Technology, 8, 551–557.Google Scholar
  53. 53.
    Go, E. K., Jung, K. J., Kim, J. M., Lim, H., Lim, H. K., Yu, B. P., & Chung, H. Y. (2007). Betaine modulates age-related NF-kappaB by thiol-enhancing action. Biological and Pharmaceutical Bulletin, 30, 2244–2249.Google Scholar
  54. 54.
    Goldschmidt, V. M. (1954). Geochemistry. Oxford: The Clarendon Press.Google Scholar
  55. 55.
    Gomez, J., Caro, P., Sanchez, I., Naudi, A., Jove, M., Portero-Otin, M., Lopez-Torres, M., Pamplona, R., & Barja, G. (2009). Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. Journal of Bioenergetics and Biomembranes, 41, 309–321.Google Scholar
  56. 56.
    Gromer, S., Arscott, L. D., Williams, C. H., Jr., Schirmer, R. H., & Becker, K. (1998). Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. Journal of Biological Chemistry, 273(32), 20096–20101.Google Scholar
  57. 57.
    Gupta, U. C., & Winter, K. A. (1975). Selenium content of soils and crops and the effects of lime and sulfur on plant selenium. Canadian Journal of Soil Science, 55, 161–166.Google Scholar
  58. 58.
    Gustafsson, J. P., & Johnsson, L. (1992). Selenium retention in the organic-matter of Swedish forest soils. Journal of Soil Science, 43, 461–472.Google Scholar
  59. 59.
    Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18(4), 309–318.Google Scholar
  60. 60.
    HarvestPlus. http://www.harvestplus.org/. Accessed 12 Jan 2010.
  61. 61.
    Hassim, S., Shaw, P. A., Sangweni, P., Malan, L., Ntshani, E., Mathibedi, M. J., Stubbs, N., Metcalf, J. A., Eckes, R., Masur, H., & Komati, S. (2010). Detection of a substantial rate of multidrug-resistant tuberculosis in an HIV-infected population in South Africa by active monitoring of sputum samples. Clinical Infectious Diseases, 50(7), 1053–1059.Google Scholar
  62. 62.
    Haug, A., Graham, R., Christophersen, O., & Lyons, G. (2007). How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microbial Ecology in Health and Disease, 19, 209–228.Google Scholar
  63. 63.
    Hayes, K. F., Roe, L. A., Brown, G. E., Hodgson, K. O., Leckie, J. O., & Parks, G. A. (1987). In situ X-ray absorption study of surface complexes: Selenium oxyanions on α-FeOOH. Science, 238, 783–786.Google Scholar
  64. 64.
    Henrotin, Y., Kurz, B., & Aigner, T. (2005). Oxygen and reactive oxygen species in cartilage degradation: Friends or foes? Osteoarthritis and Cartilage, 13(8), 643–654.Google Scholar
  65. 65.
    Hill, K. E., Lloyd, R. S., & Burk, R. F. (1993). Conserved nucleotide sequences in the open reading frame and 3′ untranslated region of selenoprotein P mRNA. Proceedings of the National Academy of Sciences of the United States of America, 90(2), 537–541.Google Scholar
  66. 66.
    Hingston, F. J., Posner, A. M., & Quirk, J. P. (1968). Adsorption of selenite by goethite. Advances in Chemistry Series, 79, 82–90.Google Scholar
  67. 67.
    Holvoet, P., De Keyzer, D., & Jacobs, D. R. (2008). Oxidized LDL and the metabolic syndrome. Future Lipidology, 3, 637–649.Google Scholar
  68. 68.
    Hopper, J. L., & Parker, D. R. (1999). Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulphate. Plant and Soil, 210, 199–207.Google Scholar
  69. 69.
    Huang, C. Y., Hung, L. F., Liang, C. C., & Ho, L. J. (2009). COX-2 and iNOS are critical in advanced glycation end product-activated chondrocytes in vitro. European Journal of Clinical Investigation, 39(5), 417–428.Google Scholar
  70. 70.
    Itoh, Y., Sekine, S., Matsumoto, E., Akasaka, R., Takemoto, C., Shirouzu, M., & Yokoyama, S. (2009). Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. Journal of Molecular Biology, 385(5), 1456–1469.Google Scholar
  71. 71.
    Jackson, B. P., & Miller, W. P. (1999). Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion-chromatography-inductively coupled plasma mass spectrometry. Environmental Science and Technology, 33(2), 270–275.Google Scholar
  72. 72.
    Jacobs, M., & Forst, C. (1981). Toxicological effects of sodium selenite in Swiss mice. Journal of Toxicology and Environmental Health, 8, 587–598.Google Scholar
  73. 73.
    Jansson, B. (1985). Geographic mappings of colorectal cancer rates: A retrospect of studies, 1974–1984. Cancer Detection and Prevention, 8, 341–348.Google Scholar
  74. 74.
    Jansson, B., Seibert, B., & Speer, J. F. (1975). Gastrointestinal cancer. Its geographic distribution and correlation to breast cancer. Cancer, 36(6 Suppl), 2373–2384.Google Scholar
  75. 75.
    John, M. K., Saunders, W. M. H., & Watkinson, J. H. (1976). Selenium adsorption by New Zealand soils. New Zealand Journal of Agricultural Research, 19, 143–151.Google Scholar
  76. 76.
    Johnson, C. D., Vance, G. F., & Legg, D. E. (1994). Selenium in thick spike wheatgrass and yellow sweet clover grown on sludge-amended alkaline mine backfill. Communications in Soil Science and Plant Analysis, 25(11–12), 2117–2132.Google Scholar
  77. 77.
    Johnsson, L. (1991). Trends and annual fluctuations in selenium concentrations in wheat grain. Plant and Soil, 133, 57–64.Google Scholar
  78. 78.
    Kang, Y., Yamada, H., Kyuma, K., & Hattori, T. (1993). Speciation of selenium in soil. Soil Science and Plant Nutrition, 39, 331–337.Google Scholar
  79. 79.
    Kaur, M., Wadhwa, R., & Sharma, S. P. (1989). Effect of sodium selenite on antioxidative enzymes of banana fruitfly. Gerontology, 35, 188–191.Google Scholar
  80. 80.
    Koc, A., & Gladyshev, V. N. (2007). Methionine sulfoxide reduction and the aging process. Annals of the New York Academy of Sciences, 1100, 383–386.Google Scholar
  81. 81.
    Krauskopf, K. B. (Ed.). (1982). Introduction to geochemistry (2nd ed., p. 546). Singapore: McGraw-Hill. Appendix 3.Google Scholar
  82. 82.
    Kurzweg, W., & Winkler, K. (Eds.). (1972). Angewandte Tierhygiene. Band 3. Gesundheitliche Aspekte der Fleischschweinproduktion [Applied animal hygiene. Vol. 3. Health aspects of meat swine production]. Jena: VEB Gustav Fischer Verlag.Google Scholar
  83. 83.
    Lauchli, A. (1993). Selenium in plants: Uptake, functions, and environmental toxicity. Botanica Acta, 106, 455–468.Google Scholar
  84. 84.
    Levander, O. A. (1986). Selenium. In W. Mertz (Ed.), Trace elements in human and animal nutrition (5th ed., Vol. 2, pp. 209–279). Orlando: Academic Press, Inc.Google Scholar
  85. 85.
    Levander, O. A., & Beck, M. A. (1999). Selenium and viral virulence. British Medical Bulletin, 55, 528–533.Google Scholar
  86. 86.
    Li, H.-F., McGrath, S., & Zhao, F.-J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 178, 92–102.Google Scholar
  87. 87.
    Li, Q., & Engelhardt, F. (2006). Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase. Journal of Biological Chemistry, 281, 1495–1505.Google Scholar
  88. 88.
    Lin, Z.-Q. (2008). Uptake and accumulation of selenium in plants in relation to chemical speciation and biotransformation. In G. S. Banuelos & Z.-Q. Lin (Eds.), Development and uses of biofortified agricultural products (pp. 45–56). Boca Raton: CRC Press.Google Scholar
  89. 89.
    Liu, Q., Wang, D. J., Jiang, X. J., & Cao, Z. H. (2004). Effects of the interaction between selenium and phosphorous on the growth and selenium accumulation in rice. Environmental Geochemistry and Health, 26, 325–330.Google Scholar
  90. 90.
    Liu, T., & O’Rourke, B. (2009). Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. Journal of Bioenergetics and Biomembranes, 41(2), 127–132.Google Scholar
  91. 91.
    Lou, M. F. (2003). Redox regulation in the lens. Progress in Retinal and Eye Research, 22(5), 657–682.Google Scholar
  92. 92.
    Lymbury, R., Venardos, K., & Perkins, A. V. (2006). Effect of sodium selenite-enriched reperfusion solutions on rat cardiac ischemia reperfusion injury. Biological Trace Element Research, 114(1–3), 197–206.Google Scholar
  93. 93.
    Lyons, G. H., Genc, Y., Soole, K., Stangoulis, J. C. R., Liu, F., & Graham, R. D. (2009). Selenium increases seed production in Brassica. Plant and Soil, 269, 369–380.Google Scholar
  94. 94.
    Lyons, G. H., Lewis, J., Lorimer, M. F., Holloway, R. E., Brace, D. M., Stangoulis, J. C. R., & Graham, R. D. (2004). High selenium wheat: Agronomic biofortification strategies to improve human nutrition. Food Agriculture and Environment, 2(1), 171–178.Google Scholar
  95. 95.
    Lyons, G. H., Ortiz-Monasterio, I., Stangoulis, J. C. R., & Graham, R. D. (2005). Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant and Soil, 269, 369–380.Google Scholar
  96. 96.
    Lyons, G. H., Stangoulis, J. C. R., & Graham, R. D. (2005). Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant and Soil, 270, 179–188.Google Scholar
  97. 97.
    Låg, J., & Steinnes, E. (1974). Soil selenium in relation to precipitation. Ambio, 3, 237–238.Google Scholar
  98. 98.
    Låg, J., & Steinnes, E. (1978). Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma, 20, 3–14.Google Scholar
  99. 99.
    Ma, S., Hill, K. E., Caprioli, R. M., & Burk, R. F. (2002). Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. Journal of Biological Chemistry, 277(15), 12749–12754.Google Scholar
  100. 100.
    Ma, Y. S., Wu, S. B., Lee, W. Y., Cheng, J. S., & Wei, Y. H. (2009). Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochimica et Biophysica Acta, 1790(10), 1021–1029.Google Scholar
  101. 101.
    Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., & Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Archives of Biochemistry and Biophysics, 484(2), 146–154.Google Scholar
  102. 102.
    Marchaluk, E., Persson-Moschos, M., Thorling, E. B., & Akesson, B. (1995). Variation in selenoprotein P concentration in serum from different European regions. European Journal of Clinical Nutrition, 49(1), 42–48.Google Scholar
  103. 103.
    Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1990). Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environmental Science and Technology, 24, 91–96.Google Scholar
  104. 104.
    Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Biogeochemical behavior of selenium in anoxic soils and sediments – An equilibrium thermodynamics approach. Journal of Environmental Science and Health A, 26, 555–573.Google Scholar
  105. 105.
    McConnell, D. (1979). Biogeochemistry of phosphate minerals. In P. A. Trudinger & D. J. Swaine (Eds.), Biogeochemical cycling of mineral-forming elements (Studies in environmental science, Vol. 3, pp. 163–204). Amsterdam/Oxford/New York: Elsevier Scientific Publishing Company.Google Scholar
  106. 106.
    Mikkelsen, R. L., Page, A. L., & Bingham, F. T. (1989). Factors affecting selenium accumulation by agricultural crops. In L. W. Jacobs (Ed.), Selenium in agriculture and the environment (Soil science society of America special publication 24, pp. 65–94). Madison: Soil Science Society of America Special Publication/American Society of Agronomy.Google Scholar
  107. 107.
    Mosher, B. W., & Duce, R. A. (1987). A global atmospheric selenium budget. Journal of Geophysical Research, 92, 13289–13298.Google Scholar
  108. 108.
    Nakamaru, Y., Tagami, K., & Uchida, S. (2006). Effect of phosphate addition on the sorption–desorption reaction of selenium in Japanese agricultural soils. Chemosphere, 63, 109–115.Google Scholar
  109. 109.
    Neal, R. H. (1995). Selenium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 260–283). London: Blackie Academic & Professional.Google Scholar
  110. 110.
    Neal, R. H., & Sposito, G. (1989). Selenate adsorption on alluvial soils. Soil Science Society of America Journal, 53, 70–74.Google Scholar
  111. 111.
    Neve, J. (1999). Combined selenium and iodine deficiency in Kaschin-Beck osteoarthropathy. In STDA bulletin (pp. 1–3). Grimbergen: Selenium Tellurium-Development Association.Google Scholar
  112. 112.
    Ngo, D. B., Dikassa, L., Okitolonda, W., Kashala, T. D., Gervy, C., Dumont, J., Vanovervelt, N., Contempré, B., Diplock, A. T., Peach, S., & Vanderpas, J. (1997). Selenium status in pregnant women of a rural population (Zaire) in relationship to iodine deficiency. Journal of Tropical Medicine & International Health, 2(6), 572–581.Google Scholar
  113. 113.
    Nriagu, R. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature, 333, 134–139.Google Scholar
  114. 114.
    Oldfield, J. E. (1999). Selenium world atlas. Grimbergen: Selenium-Tellurium Development Association (STDA).Google Scholar
  115. 115.
    Oremland, R. S., Hollibaugh, J. T., Maest, A. S., Presser, T. S., Miller, L. G., & Culbertson, C. V. (1989). Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Applied and Environmental Microbiology, 55, 2333–2343.Google Scholar
  116. 116.
    Parfitt, R. L., & Smart, R. S. C. (1968). Mechanism of sulfate adsorption on iron-oxides. Soil Science Society of America Journal, 42, 48–50.Google Scholar
  117. 117.
    Peng, A., Wang, W. H., Wang, C. X., Wang, Z. J., Rui, H. F., Wang, W. Z., & Yang, Z. W. (1999). The role of humic substances in drinking water in Kaschin-Beck disease in China. Environmental Health Perspectives, 107, 293–296.Google Scholar
  118. 118.
    Reamer, D. C., & Zoller, W. H. (1980). Selenium biomethylation products from soil and sewage sludge. Science, 208, 500–502.Google Scholar
  119. 119.
    Reilly, C. (1996). Selenium in food and health. London: Blackie Academic & Professional.Google Scholar
  120. 120.
    Ringwood, A. E. (1979). Origin of the Earth and Moon. New York/Heidelberg/Berlin: Springer.Google Scholar
  121. 121.
    Rosenfeld, I., & Beath, O. A. (1964). Selenium: Geobotany, biochemistry, toxicity, and nutrition. New York: Academic Press.Google Scholar
  122. 122.
    Schrauzer, G. N. (1976). Selenium and cancer: A review. Bioinorganic Chemistry, 5(3), 275–281.Google Scholar
  123. 123.
    Schulthess, C. P., & Hu, Z. (2001). Impact of chloride anions on proton and selenium adsorption by an aluminium oxide. Soil Science Society of America Journal, 65, 710–718.Google Scholar
  124. 124.
    Séby, B., Potin Gauthier, M., Lespés, G., & Astruc, M. (1997). Selenium speciation in soils after alkaline extraction. Science of the Total Environment, 207, 81–90.Google Scholar
  125. 125.
    Selenius, M., Rundlöf, A. K., Olm, E., Fernandes, A. P., & Björnstedt, M. (2010). Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxidants & Redox Signaling, 12(7), 867–880.Google Scholar
  126. 126.
    Shamberger, R. J., Tytko, S. A., & Willis, C. E. (1975). Selenium and heart disease. Trace substances in environmental health – IX. In Proceedings of University of Missouri’s 9th annual conference on trace substances in environmental health (pp. 15–22). Missouri: University of Missouri.Google Scholar
  127. 127.
    Shamberger, R. J., Willis, C. E., & McCormack, L. J. (1979). Selenium and heart mortality in 19 states. Trace substances in environmental health – XIII. In Proceedings of University of Missouri’s 13th annual conference on trace substances in environmental health (pp. 59–63). Missouri: University of Missouri.Google Scholar
  128. 128.
    Sherrer, R. L., Ho, J. M., & Söll, D. (2008). Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase. Nucleic Acids Research, 36(6), 1871–1880.Google Scholar
  129. 129.
    Singh, B. R., Uriyo, A. P., & Kilasara, M. (1979). Sorbtion of sulphate and distribution of total, sulphate and mineralisable sulphur in some tropical soil profiles in Tanzania. Journal of Science of Food and Agriculture, 30, 8–14.Google Scholar
  130. 130.
    Singh, M., Singh, N., & Relan, P. S. (1981). Adsorption and desorption of selenite and selenate selenium on different soils. Soil Science, 132, 134–141.Google Scholar
  131. 131.
    Singh, S., Padovani, D., Leslie, R. A., Chiku, T., & Banerjee, R. (2009). Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. Journal of Biological Chemistry, 284, 22457–22466.Google Scholar
  132. 132.
    Sors, T. G., Ellis, D. R., & Salt, D. E. (2005). Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 86, 373–389.Google Scholar
  133. 133.
    Speckmann, B., Walter, P. L., Alili, L., Reinehr, R., Sies, H., Klotz, L. O., & Steinbrenner, H. (2008). Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology, 48(6), 1998–2006.Google Scholar
  134. 134.
    Sposito, G. (1984). The surface chemistry of soils. Oxford: Oxford University Press (Ch 4).Google Scholar
  135. 135.
    Sposito, G., Yang, A., Neal, R. H., & Mackzum, A. (1991). Selenate reduction in an alluvial soil. Soil Science Society of America Journal, 55, 1597–1602.Google Scholar
  136. 136.
    Stanley, S. M. (1999). Earth system history. New York: W.H. Freeman and Company.Google Scholar
  137. 137.
    Steinnes, E. (2009). Soils and geomedicine. Environmental Geochemistry and Health, 31, 523–535.Google Scholar
  138. 138.
    Steinnes, E., Allen, R. O., Petersen, H. M., Rambæk, J. P., & Varskog, P. (1997). Evidence of large scale heavy-metal contamination of natural surface soils in Norway from long-range atmospheric transport. Science of the Total Environment, 205, 255–266.Google Scholar
  139. 139.
    Steinnes, E., Rambæk, J. P., & Hanssen, J. E. (1992). Large-scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere, 25, 735–752.Google Scholar
  140. 140.
    Stewart, M. S., Davis, R. L., Walsh, L. P., & Pence, B. C. (1997). Induction of differentiation and apoptosis by sodium selenite in human colonic carcinoma cells (HT29). Cancer Letters, 117(1), 35–40.Google Scholar
  141. 141.
    Stroud, J. C., Oltman, A., Han, A., Bates, D. L., & Chen, L. (2009). Structural basis of HIV-1 activation by NF-kappaB–a higher-order complex of p50: RelA bound to the HIV-1 LTR. Journal of Molecular Biology, 393, 98–112.Google Scholar
  142. 142.
    Stroud, J., McGrath, S. P., & Zhao, F.-J. (2012). Selenium speciation in soil extracts using LC-ICP-MS. International Journal of Environmental and Analytical Chemistry, 92(2), 222–236.Google Scholar
  143. 143.
    Suess, H. E. (1987). Chemistry of the solar system. An elementary introduction to cosmochemistry. New York: Wiley.Google Scholar
  144. 144.
    Surerus, K. K., Kennedy, M. C., Beinert, H., & Münck, E. (1989). Mössbauer study of the inactive Fe3S4 and Fe3Se4 and the active Fe4Se4 forms of beef heart aconitase. Proceedings of the National Academy of Sciences of the United States of America, 86, 9846–9850.Google Scholar
  145. 145.
    Takaoka, M., Oshita, K., Takeda, N., Yamamoto, T., Fujiwara, S., Tanaka, T., & Uruga, T. (2008). Chemical states of trace elements in sewage sludge incineration ash by using X-ray absorption fine structure. Water Science and Technology, 57(3), 411–417.Google Scholar
  146. 146.
    Tatsumi, Y., Shinjoe, H., Ishizuka, H., Sager, W. W., & Klaus, A. (1998). Geochemical evidence for a mid-Cretaceous superplume. Geology, 26, 151–154.Google Scholar
  147. 147.
    Terry, N., Zayed, A. M., de Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Physiology, 51, 401–432.Google Scholar
  148. 148.
    Thompson-Eagle, E. T., Frankenberger, W. T., Jr., & Karlson, U. (1989). Volatilization of selenium by Alternaria alternata. Applied and Environmental Microbiology, 55, 1406–1413.Google Scholar
  149. 149.
    Tiku, M. L., Gupta, S., & Deshmukh, D. R. (1999). Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free Radical Research, 30(5), 395–405.Google Scholar
  150. 150.
    Traulsen, H., Steinbrenner, H., Buchczyk, D. P., Klotz, L. O., & Sies, H. (2004). Selenoprotein P protects low-density lipoprotein against oxidation. Free Radical Research, 38(2), 123–128.Google Scholar
  151. 151.
    Ullrey, D. E. (1974). The selenium-deficiency problem in animal agriculture. In W. G. Hoekstra, J. W. Suttie, H. E. Ganther, & W. Mertz (Eds.), Trace element metabolism in animals-2 (pp. 275–293). Baltimore: University Park Press.Google Scholar
  152. 152.
    Ullrey, D. E. (1981). Selenium in the soil-plant-food chain. In J. E. Spallholz, J. L. Martin, & H. E. Ganther (Eds.), Selenium in biology and medicine (pp. 176–191). Westport: AVI Publishing Company, Inc.Google Scholar
  153. 153.
    Underwood, E. J. (1977). Trace elements in human and animal nutrition. New York: Academic.Google Scholar
  154. 154.
    Ursini, F., & Bindoli, A. (1987). The role of selenium peroxidases in the protection against oxidative damage of membranes. Chemistry and Physics of Lipids, 44(2–4), 255–276.Google Scholar
  155. 155.
    Ursini, F., Maiorino, F., & Gregolin, C. (1985). The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochimica et Biophysica Acta, 839, 62–70.Google Scholar
  156. 156.
    Van Dorst, S. H., & Peterson, P. J. (1984). Selenium speciation in the soil solution and its relevance to plant uptake. Journal of Science of Food and Agriculture, 35, 188–192.Google Scholar
  157. 157.
    Varo, P., Alfthan, G., Huttunen, J., & Aro, A. (1994). Nationwide selenium supplementation in Finland – Effects on diet, blood and tissue levels, and health. In R. Burk (Ed.), Selenium in biology and human health (pp. 197–218). New York: Springer.Google Scholar
  158. 158.
    Venketaraman, V., Dayaram, Y. K., Talaue, M. T., & Connell, N. D. (2005). Glutathione and nitrosoglutathione in macrophage defense against Mycobacterium tuberculosis. Infection and Immunity, 73, 1886–1889.Google Scholar
  159. 159.
    Vinceti, M., Maraldi, T., Bergomi, M., & Malagoli, C. (2009). Risk of chronic low-dose selenium overexposure in humans: Insights from epidemiology and biochemistry. Reviews on Environmental Health, 24(3), 231–248.Google Scholar
  160. 160.
    Weres, O., Bowman, H. R., Goldstein, A., Tsao, L., & Harnden, W. (1990). The effect of nitrate and organic matter upon mobility of selenium in groundwater and in a water treatment process. Water, Air, and Soil Pollution, 49, 251–272.Google Scholar
  161. 161.
    Whanger, P. D. (1981). Selenium and heavy metal toxicity. In J. E. Spallholz, J. L. Martin, & H. E. Ganther (Eds.), Selenium in biology and medicine (pp. 230–255). Westport: AVI Publishing Company, Inc.Google Scholar
  162. 162.
    Whanger, P. D. (2002). Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 21, 223–232.Google Scholar
  163. 163.
    White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., Meachan, M. C., Mead, A., Harriman, M., Trueman, L. J., Smith, B. M., Thomas, B., & Broadley, M. R. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55, 1927–1937.Google Scholar
  164. 164.
    Xu, G. L., & Jiang, Y. F. (1985). Selenium and the prevalence of Keshan and Kaschin-Beck diseases in China. In I. Thornton (Ed.), Proceedings of the 1st international symposium on geochemistry and health. Held at the Royal Society, London 16–17 April 1985 (pp. 192–204). Northwood: Science Reviews Ltd.Google Scholar
  165. 165.
    Yamada, H., Kang, Y., Aso, T., Uesugi, H., Fujimura, T., & Yonebayashi, K. (1998). Chemical forms and stability of selenium in soil. Soil Science and Plant Nutrition, 44, 385–391.Google Scholar
  166. 166.
    Yang, G. Q., Wang, S. Z., Zhou, R. H., & Sun, S. Z. (1983). Endemic selenium intoxication of humans in China. American Journal of Clinical Nutrition, 37(5), 872–881.Google Scholar
  167. 167.
    Ylaranta, T. (1983). Sorption of selenite and selenate in the soil. Annales Agriculturae Fenniae, 22, 29–39.Google Scholar
  168. 168.
    Yu, S. Y., Zhu, Y. J., Li, W. G., Huang, Q. S., Huang, C. Z., Zhang, Q. N., & Hou, C. (1991). A preliminary report on the intervention trials of primary liver cancer in high-risk populations with nutritional supplementation of selenium in China. Biological Trace Element Research, 29(3), 289–294.Google Scholar
  169. 169.
    Yu, W. H., Meng, X. Z., Zheng, S. J., Li, Z. H., & Yang, G. Y. (1985). Progress in the study of Keshan disease. Heart and Vessels, 1(Supplement 1), 286–287.Google Scholar
  170. 170.
    Zayed, A. M., Lytle, C. M., & Terry, N. (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta, 206, 284–292.Google Scholar
  171. 171.
    Zhang, A., Cao, J. L., Yang, B., Chen, J. H., Zhang, Z. T., Li, S. Y., Fu, Q., Hugnes, C. E., & Caterson, B. (2010). Effects of moniliformin and selenium on human articular cartilage metabolism and their potential relationships to the pathogenesis of Kashin-Beck disease. Journal of Zhejiang University. Science. B, 11(3), 200–208.Google Scholar
  172. 172.
    Zhao, R., Xiang, N., Domann, F. E., & Zhong, W. (2009). Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells. Nutrition and Cancer, 61(3), 397–407.Google Scholar
  173. 173.
    Zou, K., Liu, G., Wu, T., & Du, L. (2009). Selenium for preventing Kashin-Beck osteoarthropathy in children: A meta-analysis. Osteoarthritis and Cartilage, 17(2), 144–151.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Olav Albert Christophersen
    • 1
  • Graham Lyons
    • 2
  • Anna Haug
    • 3
    Email author
  • Eiliv Steinnes
    • 4
  1. 1.Pensioned State StipendiateOsloNorway
  2. 2.School of Agriculture, Food & VineUniversity of AdelaideGlen OsmondAustralia
  3. 3.Department of Animal and Aquacultural SciencesThe Norwegian University of Life SciencesAasNorway
  4. 4.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations