Cobalt and Manganese

Chapter
Part of the Environmental Pollution book series (EPOL, volume 22)

Abstract

Cobalt (Co) and manganese (Mn) are closely associated in soils because they have similar chemical properties. The main forms of Mn in soil are the water-soluble and exchangeable forms of Mn(II) and the insoluble Mn oxides, mainly Mn(IV) and to a lesser and more uncertain extent as Mn(III). The concentration of water-soluble plus exchangeable Mn(II) (WS+Exch Mn) is determined by the relative rates of the chemically independent and physically separate reactions, the microbial oxidation of Mn(II) and the chemical reduction of the Mn oxides (by organic matter). The solubility and availability of Co to plants is influenced greatly by the activity of the Mn oxides and the reactions which affect Mn. The Mn oxides also participate in sorption and oxidation reactions which impact on soil health in that the former affects the availability of trace metals and the latter oxidises organic moieties, of which some are phytotoxic.

Keywords

Cobalt Manganese Attenuation Biogenic Mn oxides Microbial oxidation Soil health Sorption 

References

  1. 1.
    Adams, S. N., & Honeysett, J. L. (1964). Some effects of waterlogging on the cobalt and copper status of pasture plants in pots. Australian Journal of Agricultural Research, 15, 357–367.Google Scholar
  2. 2.
    Adams, S. N., Honeysett, J. L., Tiller, K. G., & Norrish, K. (1969). Factors controlling the increase of cobalt in plants following the addition of a cobalt fertiliser. Australian Journal of Soil Research, 7, 29–42.Google Scholar
  3. 3.
    Adams, K. M., Japar, S. M., & Pierson, W. R. (1986). The development of a MnO2-coated, cylindrical denuder for removing NO2 from atmospheric samples. Atmospheric Environment, 20, 1211–1215.Google Scholar
  4. 4.
    Alexander, M. (1994). Biodegradation and bioremediation. San Diego: Academic.Google Scholar
  5. 5.
    Anderson, J. U., & O’Connor, G. A. (1972). Production of permanganate ion by sodium hypochlorite treatment to remove soil organic matter. Proceedings of the Soil Science Society of America, 36, 973–975.Google Scholar
  6. 6.
    Arines, J., Vilariño, A., & Sainz, M. (1989). Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense L.) plants. New Phytologist, 112, 215–219.Google Scholar
  7. 7.
    Bakkaus, E., Collins, R. N., Morel, J.-L., & Gouget, B. (2008). Potential phytoavailability of anthropogenic cobalt in soils as measured by isotope dilution techniques. Science of the Total Environment, 406, 108–115.Google Scholar
  8. 8.
    Barrow, N. J. (1998). Effects of time and temperature on the sorption of cadmium, zinc, cobalt, and nickel by soil. Australian Journal of Soil Research, 36, 941–950.Google Scholar
  9. 9.
    Beckett, P. H. T. (1989). The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. Advances in Soil Sciences, 9, 143–176.Google Scholar
  10. 10.
    Bethlenfalvay, G. J., & Franson, R. L. (1989). Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition, 12, 953–970.Google Scholar
  11. 11.
    Bonfante, P., & Anca, I. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363–383.Google Scholar
  12. 12.
    Brennan, R. F. (2001). Residual value of zinc fertiliser for production of wheat. Australian Journal of Experimental Agriculture, 41, 541–547.Google Scholar
  13. 13.
    Brennan, R. F. (2006). Long-term residual value of copper fertiliser for production of wheat. Australian Journal of Experimental Agriculture, 46, 77–83.Google Scholar
  14. 14.
    Brennan, R. F., Gartrell, J. W., & Adcock, K. G. (2001). Residual value of manganese fertiliser for lupin grain production. Australian Journal of Experimental Agriculture, 41, 1187–1197.Google Scholar
  15. 15.
    Bromfield, S. M. (1956). Oxidation of manganese by soil microorganisms. Australian Journal of Biological Sciences, 9, 238–252.Google Scholar
  16. 16.
    Bromfield, S. M. (1976). The deposition of manganese oxide by an alga on acid soil. Australian Journal of Soil Research, 14, 95–102.Google Scholar
  17. 17.
    Bromfield, S. M. (1978). The oxidation of manganous ions under acidic conditions by an acidiphilous actinomycete from an acid soil. Australian Journal of Soil Research, 16, 91–100.Google Scholar
  18. 18.
    Bromfield, S. M., & David, D. J. (1978). Properties of biologically formed manganese oxide in relation to soil manganese. Australian Journal of Soil Research, 16, 79–89.Google Scholar
  19. 19.
    Cahyani, V. R., Murase, J., Ishibashi, E., Asakawa, S., & Kimura, M. (2007). Bacterial communities in manganese nodules in rice field subsoils. Soil Science and Plant Nutrition, 53, 575–584.Google Scholar
  20. 20.
    Cahyani, V. R., Murase, J., Ishibashi, E., Asakawa, S., & Kimura, M. (2009). Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils. Biology and Fertility of Soils, 45, 337–346.Google Scholar
  21. 21.
    Chen, Z., Kim, K.-W., Zhu, Y.-G., McLaren, R., Liu, F., & He, J.-Z. (2006). Adsorption (AsIII, V) and oxidation (AsIII) by pedogenic Fe-Mn nodules. Geoderma, 136, 566–572.Google Scholar
  22. 22.
    Childs, C. W. (1975). Composition of iron-manganese concretions from some New Zealand soils. Geoderma, 13, 141–152.Google Scholar
  23. 23.
    Clark, J. S. (1970). Distribution constant for exchange of calcium and manganese in Wyoming bentonite. Canadian Journal of Soil Science, 50, 85–86.Google Scholar
  24. 24.
    Clark, R. B., & Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23, 867–902.Google Scholar
  25. 25.
    Conyers, M. K., Uren, N. C., & Helyar, K. R. (1995). Causes of changes in pH in acidic mineral soils. Soil Biology and Biochemistry, 27, 1383–1392.Google Scholar
  26. 26.
    Conyers, M. K., Uren, N. C., Helyar, K. R., Poile, G. J., & Cullis, B. R. (1997). Temporal variation in soil acidity. Australian Journal of Soil Research, 35, 1115–1129.Google Scholar
  27. 27.
    Cornu, S., Montagne, D., & Vasconcelos, P. M. (2009). Dating constituent formation in soils to determine rates of soil processes: A review. Geoderma, 153, 293–303.Google Scholar
  28. 28.
    Crowther, D. L., Dillard, J. G., & Murray, J. W. (1983). The mechanism of Co(II) oxidation on synthetic birnessite. Geochimica et Cosmochimica Acta, 47, 1399–1403.Google Scholar
  29. 29.
    David, D. J., & Williams, C. H. (1979). Effects of cultivation on the availability of metals accumulated in agricultural and sewage-treated soils. Progress in Water Technology, 11, 257–264.Google Scholar
  30. 30.
    De Groot, A. J. (1973). Occurrence and behaviour of heavy metals in river deltas, with special reference to the Rhine and Ems Rivers. In E. D. Goldberg (Ed.), North Sea sciences (pp. 308–325). Cambridge, UK: Cambridge University Press.Google Scholar
  31. 31.
    Diem, D., & Stumm, W. (1984). Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochimica et Cosmochimica Acta, 48, 1571–1573.Google Scholar
  32. 32.
    Fallab, S. (1967). Reactions with molecular oxygen. Angewandte Chemie International Edition, 6, 496–507.Google Scholar
  33. 33.
    Fatiadi, A. (1986). The oxidation of organic compounds by active manganese dioxide. In W. Mijs & C. R. H. I. de Jonge (Eds.), Organic synthesis by oxidation with metal compounds (pp. 119–241). New York: Plenum Press.Google Scholar
  34. 34.
    Feng, X. H., Zhai, L. M., Tan, W. F., Liu, F., & He, J. Z. (2007). Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environmental Pollution, 147, 366–373.Google Scholar
  35. 35.
    Fleming, G. A. (1983). Aspects of the soil chemistry of cobalt. In S. S. Augustithis (Ed.), The significance of trace elements in solving petrogenetic problems & controversies (pp. 731–743). Athens: Theophrastus Publications.Google Scholar
  36. 36.
    Ghiorse, W. C. (1988). The biology of manganese transforming microorganisms in soil. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 75–85). Dordrecht: Kluwer Academic.Google Scholar
  37. 37.
    Ghiorse, W. C., & Hirsch, P. (1979). An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like bacteria. Archives of Microbiology, 123, 213–226.Google Scholar
  38. 38.
    Gilbert, M. (1970). Thermodynamic study of calcium-manganese exchange on Camp-Berteau montmorillonite. Soil Science, 102, 23–25.Google Scholar
  39. 39.
    Gilkes, R. J., & McKenzie, R. M. (1988). Geochemistry and mineralogy of manganese in soils. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 23–35). Dordrecht: Kluwer Academic.Google Scholar
  40. 40.
    Goldberg, S. P., Smith, K. A., & Holmes, J. C. (1983). The effects of soil compaction, form of nitrogen fertiliser, and fertiliser placement on the availability of manganese to barley. Journal of the Science of Food and Agriculture, 34, 657–670.Google Scholar
  41. 41.
    Goldschmidt, V. M. (1958). Geochemistry. London: Oxford University Press.Google Scholar
  42. 42.
    Greenberg, W. A., & Wilding, L. P. (1998). Evidence for contemporary and relict redoximorphic features of an alfisol in east-central Texas. In M. C. Rabenhorst, J. Bell, & P. McDaniel (Eds.), Quantifying soil hydromorphology (Soil Science Society of America special publication, Vol. 54, pp. 227–246). Madison: Soil Science Society of America.Google Scholar
  43. 43.
    Guest, C. A., Schulze, D. G., Thompson, I. A., & Huber, D. M. (2002). Correlating manganese X-ray absorption near-edge structure spectra and extractable soil manganese. Soil Science Society of America Journal, 66, 1172–1181.Google Scholar
  44. 44.
    Hannam, R. J., & Okhi, K. (1988). Detection of manganese deficiency and toxicity in plants. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 243–259). Dordrecht: Kluwer Academic.Google Scholar
  45. 45.
    He, J., Zhang, L., Jin, S., & Zhu, Y. (2008). Bacterial communities inside and surrounding soil iron-manganese nodules. Geomicrobiology Journal, 25, 14–24.Google Scholar
  46. 46.
    Hopmans, P. (2009). (personal communication).Google Scholar
  47. 47.
    Hutchinson, T. C., & Whitby, L. M. (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I. Soil and vegetation contamination by nickel, copper, and other metals. Environmental Conservation, 1, 123–132.Google Scholar
  48. 48.
    James, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1997). Oxidation-reduction chemistry of chromium: Relevance to the regulation and remediation of chromate-contaminated soils. Journal of Soil Contamination, 6, 569–580.Google Scholar
  49. 49.
    Jarvis, S. C. (1984). The association of cobalt with easily reducible manganese in some acidic permanent grassland soils. Journal of Soil Science, 35, 431–438.Google Scholar
  50. 50.
    Jeffery, J. J. (1982). Factors affecting the uptake of copper by plants. Ph.D. thesis, La Trobe University.Google Scholar
  51. 51.
    Jeffery, J. J., & Uren, N. C. (1983). Copper and zinc species in the soil solution and the effects of soil pH. Australian Journal of Soil Research, 21, 479–488.Google Scholar
  52. 52.
    Jones, L. H. P. (1957). The effect of liming a neutral soil on the cycle of manganese. Plant and Soil, 8, 315–327.Google Scholar
  53. 53.
    Jones, L. H. P. (1957). The effect of liming a neutral soil on the uptake of manganese by plants. Plant and Soil, 8, 301–314.Google Scholar
  54. 54.
    Jones, L. H. P., & Leeper, G. W. (1951). Available of manganese oxides in neutral and alkaline soils. Plant and Soil, 3, 154–159.Google Scholar
  55. 55.
    Jones, L. H. P., & Leeper, G. W. (1951). The availability of various manganese oxides to plants. Plant and Soil, 3, 141–153.Google Scholar
  56. 56.
    Kessick, M. A., & Morgan, J. J. (1975). Mechanism of autoxidation of manganese in aqueous solution. Environmental Science and Technology, 9, 157–159.Google Scholar
  57. 57.
    Kothari, S. K., Marschner, H., & Römheld, V. (1991). Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentration in maize. New Phytologist, 117, 649–655.Google Scholar
  58. 58.
    Kožuh, N., Štupar, J., & Gorenc, B. (2000). Reduction and oxidation processes of chromium in soils. Environmental Science and Technology, 34, 112–119.Google Scholar
  59. 59.
    Krishnamurti, G. S. R., & Naidu, R. (2008). Chemical speciation and bioavailability of trace metals. In A. Violante, P. M. Huang, & G. M. Gadd (Eds.), Biophysico-chemical processes of heavy metals and metalloids in soil environments (pp. 419–466). New York: Wiley.Google Scholar
  60. 60.
    Lavkulich, L. M., & Wiens, J. H. (1970). Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effects on selected mineral constituents. Proceedings of the Soil Science Society of America, 34, 755–758.Google Scholar
  61. 61.
    Leeper, G. W. (1934). Relationship of soils to manganese deficiency of plants. Nature, 134, 972–973.Google Scholar
  62. 62.
    Leeper, G. W., & Swaby, R. F. (1940). The oxidation of manganous compounds by microorganisms in soil. Soil Science, 49, 163–170.Google Scholar
  63. 63.
    Leff, J. W., & Fierer, N. (2008). Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry, 40, 1629–1636.Google Scholar
  64. 64.
    Lehmann, R. G., Cheng, H. H., & Harsh, J. B. (1987). Oxidation of phenolics by soil iron and manganese oxides. Soil Science Society of America Journal, 51, 351–356.Google Scholar
  65. 65.
    Levinson, A. A. (1974). Introduction to exploration geochemistry. Calgary: Applied Publishing.Google Scholar
  66. 66.
    Li, H., Lee, L. S., Schulze, D. G., & Guest, C. A. (2003). Role of soil manganese in the oxidation of aromatic amines. Environmental Science and Technology, 37, 2686–2693.Google Scholar
  67. 67.
    Li, H.-F., Grey, C., Micó, C., Zhao, F.-J., & McGrath, S. P. (2009). Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 75, 979–986.Google Scholar
  68. 68.
    Li, Z., McLaren, R. G., & Metherell, A. K. (2001). Cobalt and manganese relationships in New Zealand soils. New Zealand Journal of Agricultural Research, 44, 191–200.Google Scholar
  69. 69.
    Li, Z., McLaren, R. G., & Metherell, A. K. (2001). Fractionation of cobalt and manganese in New Zealand soils. Australian Journal of Soil Research, 39, 951–967.Google Scholar
  70. 70.
    Li, Z., McLaren, R. G., & Metherell, A. K. (2004). The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. New Zealand Journal of Agricultural Research, 44, 191–200.Google Scholar
  71. 71.
    Liu, F., Combo, C., Adamo, P., He, J. Z., & Violante, A. (2002). Trace elements in manganese-iron nodules from a Chinese alfisol. Soil Science Society of America Journal, 66, 661–670.Google Scholar
  72. 72.
    Longnecker, N. E., Marcar, N. E., & Graham, R. D. (1991). Increased manganese content of barley seeds can increase grain yield in manganese-deficient conditions. Australian Journal of Agricultural Research, 42, 1065–1074.Google Scholar
  73. 73.
    Lovley, D. R. (1994). Microbial reduction of iron, manganese, and other metals. Advances in Agronomy, 54, 175–231.Google Scholar
  74. 74.
    Luther, G. W., III. (2005). Manganese(II) oxidation and Mn(IV) reduction in the environment – Two one-electron transfer steps versus a single two-electron step. Geomicrobiology Journal, 22, 195–203.Google Scholar
  75. 75.
    Ma, Y., & Uren, N. C. (1995). Application of a new fractionation scheme for heavy metals in soils. Communications in Soil Science and Plant Analysis, 26, 3291–3303.Google Scholar
  76. 76.
    Majcher, E. H., Chorover, J., Bollag, J.-M., & Huang, P. M. (2000). Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol. Soil Science Society of America Journal, 64, 157–163.Google Scholar
  77. 77.
    Makino, T., Takahashi, Y., & Sakurai, Y. (1997). The influence of air-drying treatment on chemical forms of Mn, Co, Zn and Cu in soils. Japanese Journal of Soil Science and Plant Nutrition, 68, 409–416.Google Scholar
  78. 78.
    Makino, T., Hasegawa, S., Sakurai, Y., Ohno, S., Utagawa, H., Maejima, Y., & Momohara, K. (2000). Influence of soil-drying under field conditions on exchangeable manganese, cobalt, and copper contents. Soil Science and Plant Nutrition, 46, 581–590.Google Scholar
  79. 79.
    Manceau, A., Tommaseo, C., Rihs, S., Geoffroy, N., Chateigner, D., Schlegel, M., Tisserand, D., Marcus, M. A., Tamura, N., & Chen, Z.-S. (2005). Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption and diffraction. Geochimica et Cosmochimica Acta, 69, 4007–4034.Google Scholar
  80. 80.
    McBride, M. B. (1982). Electron spin resonance investigation of Mn2+ complexation in natural and synthetic organics. Soil Science Society of America Journal, 46, 1137–1143.Google Scholar
  81. 81.
    McBride, M. B. (1987). Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Science Society of America Journal, 51, 1466–1472.Google Scholar
  82. 82.
    McBride, M. B. (1989). Reactions controlling heavy metal solubility in soils. Advances in Soil Sciences, 10, 1–56.Google Scholar
  83. 83.
    McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.Google Scholar
  84. 84.
    McBride, M. B. (2007). Attenuation of metal toxicity in soils by biological processes. In R. Hamon, M. McLaughlin, & E. Lombi (Eds.), Natural attenuation of trace element availability in soils (pp. 113–136). Boca Raton: CRC Press.Google Scholar
  85. 85.
    McBride, M. B., & Martinez, C. E. (2000). Copper phytotoxicity in a contaminated soil: Remediation tests with adsorptive materials. Environmental Science and Technology, 34, 4386–4391.Google Scholar
  86. 86.
    McKenzie, R. M. (1970). The reaction of cobalt with manganese dioxide minerals. Australian Journal of Soil Research, 8, 97–106.Google Scholar
  87. 87.
    McKenzie, R. M. (1971). The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493–502.Google Scholar
  88. 88.
    McKenzie, R. M. (1975). An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. Australian Journal of Soil Research, 13, 177–188.Google Scholar
  89. 89.
    McKenzie, R. M. (1978). The effect of two manganese dioxides on the uptake of lead, cobalt, nickel, copper and zinc by subterranean clover. Australian Journal of Soil Research, 16, 209–214.Google Scholar
  90. 90.
    McKenzie, R. M. (1980). The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 18, 61–73.Google Scholar
  91. 91.
    McKenzie, R. M. (1989). Manganese oxides and hydroxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (2nd ed., pp. 439–465). Madison: Soil Science Society of America.Google Scholar
  92. 92.
    McLaren, R. G., Lawson, D. M., Swift, R. S., & Purves, D. (1985). The effects of cobalt additions on soil and herbage concentrations in some S. E. Scotland pastures. Journal of Agricultural Science Cambridge, 105, 347–363.Google Scholar
  93. 93.
    McLaren, R. G., Lawson, D. M., & Swift, R. S. (1987). The availability to pasture plants of native and applied soil cobalt in relation to extractable soil cobalt and other soil properties. Journal of the Science of Food and Agriculture, 39, 101–112.Google Scholar
  94. 94.
    Mench, M., Vangronsveld, J., Lepp, N., Ruttens, A., Bleeker, P., & Geebelen, G. (2007). Use of soil amendments to attenuate trace element exposure: Sustainability, side effects, and failures. In R. Hamon, R. M. McLaughlin, & E. Lombi (Eds.), Natural attenuation of trace element availability in soils (pp. 197–228). Boca Raton: CRC Press.Google Scholar
  95. 95.
    Meng, Y.-T., Zheng, Y.-M., Zhang, L.-M., & He, J.-Z. (2009). Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environmental Pollution, 157, 2577–2583.Google Scholar
  96. 96.
    Micó, C., Li, H.-F., Zhao, F.-J., & McGrath, S. P. (2008). Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils. Environmental Pollution, 156, 883–890.Google Scholar
  97. 97.
    Miller, W. P., Martens, D. C., & Zelazny, L. W. (1986). Effect of sequence in extraction of trace metals from soils. Soil Science Society of America Journal, 50, 598–601.Google Scholar
  98. 98.
    Mitchell, R. L. (1964). Trace elements in soils. In F. E. Bear (Ed.), Chemistry of the soil (2nd ed., pp. 320–368). New York: Reinhold.Google Scholar
  99. 99.
    Miyata, N., Tani, Y., Sakata, M., & Iwahori, K. (2007). Microbial manganese oxide formation and interaction with toxic metal ions. Journal of Bioscience and Bioengineering, 104, 1–8.Google Scholar
  100. 100.
    Morgan, J. J. (2005). Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochimica et Cosmochimica Acta, 69, 35–48.Google Scholar
  101. 101.
    Murray, J. W., Dillard, J. G., Giovanoli, R., Moers, H., & Stumm, W. (1985). Oxidation of Mn(II): Initial mineralogy, oxidation state an ageing. Geochimica et Cosmochimica Acta, 49, 463–470.Google Scholar
  102. 102.
    Murray, K. J., Webb, S. M., Gargar, J. R., & Tebo, B. M. (2007). Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. Strain SG-1. Applied and Environmental Microbiology, 73, 6905–6909.Google Scholar
  103. 103.
    Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48, 311–333.Google Scholar
  104. 104.
    Negra, C., Ross, D. S., & Lanzirotti, A. (2005). Oxidizing behaviour of soil manganese: Interactions among abundance, oxidation state, and pH. Proceedings of the Soil Science Society of America, 69, 87–95.Google Scholar
  105. 105.
    Negra, C., Ross, D. S., & Lanzirotti, A. (2005). Soil manganese oxides and trace metals: Competitive sorption and micro-focused synchroton X-ray fluorescence mapping. Proceedings of the Soil Science Society of America, 69, 353–361.Google Scholar
  106. 106.
    Nicholson, R. L., & Wood, K. V. (2001). Phytoalexins and secondary products, where are they and how can we measure them? Physiological and Molecular Plant Pathology, 59, 63–69.Google Scholar
  107. 107.
    Nogueira, M. A., Magalhaes, G. C., & Cardoso, E. J. B. N. (2004). Manganese toxicity in mycorrhizal and phosphorus-fertilized soybeans. Journal of Plant Nutrition, 27, 141–156.Google Scholar
  108. 108.
    Norrish, K. (1978). Geochemistry and mineralogy of trace elements. In D. J. D. Nicholas & A. R. Egan (Eds.), Trace elements in soil-plant-animal systems (pp. 55–81). New York: Academic.Google Scholar
  109. 109.
    Palumbo, B., Bellanca, A., Neri, R., & Roe, M. J. (2001). Trace metal partitioning in Fe-Mn nodules from Sicilian soils. Chemical Geology, 173, 257–269.Google Scholar
  110. 110.
    Park, K. H., Moody, K., Kim, S. C., & Kim, K. U. (1992). Alleopathic activity and determination of allelochemicals from Sunflower (Helianthus annnuus L.) root exudates. II. Elucidation of allelochemicals from sunflower exudates. Korean Journal of Weed Science, 12, 173–182.Google Scholar
  111. 111.
    Parsons, R. F., & Uren, N. C. (2007). The relationship between lime chlorosis, trace elements and Mundulla Yellows. Australasian Plant Pathalogy, 36, 415–418.Google Scholar
  112. 112.
    Passioura, J. B., & Leeper, G. W. (1963). Available manganese and the X hypothesis. Agrochimica, 8, 81–90.Google Scholar
  113. 113.
    Passioura, J. B., & Leeper, G. W. (1963). Soil compaction and manganese deficiency. Nature, 200, 29–30.Google Scholar
  114. 114.
    Perkins, G.R., & Uren, N. C. (1977). The effect of cultivation, phosphorus application and liming on heavy metal uptake from sewage amended soil. (From unpublished thesis).Google Scholar
  115. 115.
    Peverill, K. P., & Judson, G. J. (1999). Cobalt. In K. I. Peverill, L. A. Sparrow, & D. J. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 319–323). Collingwood: CSIRO.Google Scholar
  116. 116.
    Pilon-Smits, E. A. H., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267–274.Google Scholar
  117. 117.
    Pinkerton, B. W., & Brown, K. W. (1985). Plant accumulation and soil sorption of cobalt from cobalt-amended soils. Agronomy Journal, 77, 634–638.Google Scholar
  118. 118.
    Reisenauer, H. M. (1988). Determination of plant-available soil manganese. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 87–98). Dordrecht: Kluwer Academic.Google Scholar
  119. 119.
    Reuter, D. J., Alston, A. M., & McFarlane, J. D. (1988). Occurrence and correction of manganese deficiency in plants. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 205–224). Dordrecht: Kluwer Academic.Google Scholar
  120. 120.
    Ross, D. S., & Bartlett, R. J. (1981). Evidence for nonmicrobial oxidation of manganese in soil. Soil Science, 132, 153–160.Google Scholar
  121. 121.
    Ross, D. S., Hales, H. C., Shea-McCarthy, G. C., & Lanzirotto, A. (2001). Sensitivity of soil manganese oxides: Drying and storage cause reduction. Soil Science Society of America Journal, 65, 736–743.Google Scholar
  122. 122.
    Ross, D. S., Hales, H. C., Shea-McCarthy, G. C., & Lanzirotto, A. (2001). Sensitivity of soil manganese oxides: XANES spectroscopy may cause reduction. Soil Science Society of America Journal, 65, 744–752.Google Scholar
  123. 123.
    Samuel, G., & Piper, C. S. (1928). Grey speck (manganese deficiency) disease of oats. Journal of Agriculture South Australia, 31(696–705), 789–799.Google Scholar
  124. 124.
    Sanders, J. R. (1982). The effect of pH upon the copper and cupric ion concentrations in soil solutions. Journal of Soil Science, 33, 679–689.Google Scholar
  125. 125.
    Sanders, J. R. (1983). The effect of pH on the total and free ionic concentrations of manganese, zinc and cobalt in soil solutions. Journal of Soil Science, 34, 315–323.Google Scholar
  126. 126.
    Sasaki, K., Matsuda, M., Urata, T., Hirajima, T., & Konno, H. (2008). Sorption of Co2+ ions on the biogenic Mn oxide produced by a Mn-oxidizing fungus, Paraconiothyrium sp. WL-2. Materials Transactions, 49, 605–611.Google Scholar
  127. 127.
    Schlitchting, E., & Sparrow, L. A. (1988). Distribution and amelioration of manganese toxic soils. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 277–292). Dordrecht: Kluwer Academic.Google Scholar
  128. 128.
    Shaw, L. J., Beaton, Y., Glover, L. A., Killham, K., & Meharg, A. A. (1999). Re-inoculation of autoclaved soil as a non-sterile treatment for xenobiotic sorption and biodegradation studies. Applied Soil Ecology, 11, 217–226.Google Scholar
  129. 129.
    Sherrell, C. G. (1990). Effect of cobalt application on the cobalt status of pastures. 2. Pastures without previous cobalt application. New Zealand Journal of Agricultural Research, 33, 305–311.Google Scholar
  130. 130.
    Sherrell, C. G., Percival, N. S., & Gee, T. M. (1990). Effect of cobalt application on the cobalt status of pastures. 1. Pastures with history of regular cobalt application. New Zealand Journal of Agricultural Research, 33, 295–304.Google Scholar
  131. 131.
    Shindo, H. (1990). Catalytic synthesis of humic acids from phenolic compounds by Mn(IV) oxide (birnessite). Soil Science and Plant Nutrition, 36, 679–682.Google Scholar
  132. 132.
    Siqueira, J. O., Nair, M. G., Hammerschmidt, R., & Safir, G. R. (1991). Significance of phenolic compounds in plant-soil-microbial systems. Critical Reviews in Plant Sciences, 10, 63–121.Google Scholar
  133. 133.
    Sparrow, L. A., & Uren, N. C. (1987). Oxidation and reduction of Mn in acidic soils: Effect of temperature and soil pH. Soil Biology and Biochemistry, 19, 143–148.Google Scholar
  134. 134.
    Sparrow, L. A., & Uren, N. C. (1987). The role of manganese toxicity in crop yellowing on seasonally waterlogged and strongly acidic soils in north-eastern Victoria. Australian Journal of Experimental Agriculture, 27, 303–307.Google Scholar
  135. 135.
    Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.Google Scholar
  136. 136.
    Sutton, A. N., Blake, S., Wilson, C. J. N., & Charlier, B. L. A. (2000). Late Quaternary evolution of a hyperactive rhyolite magmatic system: Taupo volcanic centre, New Zealand. Journal of the Geological Society, 157, 537–552.Google Scholar
  137. 137.
    Taylor, R. M., & McKenzie, R. M. (1966). The association of trace elements with manganese in Australian soils. Australian Journal of Soil Research, 4, 29–39.Google Scholar
  138. 138.
    Taylor, N. H., & Pohlen, I. J. (1962). Soil survey method: A New Zealand handbook for the field study of soils (New Zealand Soil Bureau bulletin, Vol. 25). Wellington: New Zealand Department of Scientific and Industrial Research.Google Scholar
  139. 139.
    Tebo, B. M., & He, L. M. (1998). Microbially mediated oxidative precipitation reactions. In D. L. Sparks & T. J. Grundl (Eds.), Mineral-water interface reactions: Kinetics and mechanisms (pp. 393–414). Washington, DC: American Chemical Society.Google Scholar
  140. 140.
    Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., & Webb, S. M. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328.Google Scholar
  141. 141.
    Tebo, B. M., Johnson, H. A., McCarthy, J. K., & Templeton, A. S. (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13, 421–428.Google Scholar
  142. 142.
    Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.Google Scholar
  143. 143.
    Thompson, I. A., Huber, D. M., Guest, C. A., & Schulze, D. G. (2005). Fungal manganese oxidation in a reduced soil. Environmental Microbiology, 7, 1480–1487.Google Scholar
  144. 144.
    Tiller, K. G. (1963). Weathering and soil formation on dolerite in Tasmania with particular reference to several trace elements. Australian Journal of Soil Research, 1, 74–90.Google Scholar
  145. 145.
    Tiller, K. G. (1983). Micronutrients. In Soils: An Australian viewpoint (pp. 365–387). Melbourne/London: Division of Soils, CSIRO/Academic.Google Scholar
  146. 146.
    Tokashiki, Y., Dixon, J. B., & Golden, D. C. (1986). Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods. Soil Science Society of America Journal, 50, 1079–1084.Google Scholar
  147. 147.
    Tokashiki, Y., Hentona, T., Shimo, M., & Arachchi, L. P. V. (2003). Improvement of the successive selective dissolution procedures for the separation of birnessite, lithiophorite, and goethite in soil manganese nodules. Soil Science Society of America Journal, 67, 837–843.Google Scholar
  148. 148.
    Tommerup, I. C., & Kidby, D. K. (1980). Production of aseptic spores of vesicular-arbuscular endophytes and their viability after chemical and physical stress. Applied and Environmental Microbiology, 39, 1111–1119.Google Scholar
  149. 149.
    Toner, B., & Sposito, G. (2005). Reductive dissolution of biogenic manganese oxides in the presence of a hydrated biofilm. Geomicrobiology Journal, 22, 171–180.Google Scholar
  150. 150.
    Toner, B., Fakra, S., Villalobos, M., Warwick, T., & Sposito, G. (2005). Spatially resolved characterization of biogenic manganese oxide production within a bacterial film. Applied and Environmental Microbiology, 71, 1300–1310.Google Scholar
  151. 151.
    Tongtavee, N., Shiowatana, J., McLaren, R. G., & Buanuam, J. (2005). Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Communications in Soil Science and Plant Analysis, 36, 2839–2845.Google Scholar
  152. 152.
    Trocmé, S., Barbier, G., & Chabannes, J. (1950). Recherches sur la chlorose, par carence de manganèse, des cultures irriguées a l’eau d’égout. Annales Agronomiques, 1, 663–685.Google Scholar
  153. 153.
    Underwood, E. J., & Suttle, N. F. (1999). The mineral nutrition of livestock. Wallingford: CABI.Google Scholar
  154. 154.
    Uren, N. C. (1980). Zinc-induced manganese deficiency. National Soils Conference, Sydney. (Unpublished).Google Scholar
  155. 155.
    Uren, N. C. (1989). Rhizosphere reactions of aluminium and manganese. Journal of Plant Nutrition, 12, 173–185.Google Scholar
  156. 156.
    Uren, N. C. (1990). The effect of sulphur dioxide on extractable manganese in soils. Communications in Soil Science and Plant Analysis, 21, 429–438.Google Scholar
  157. 157.
    Uren, N. C. (1990). The movement and distribution of manganese added to soil. Australian Journal of Soil Research, 28, 677–683.Google Scholar
  158. 158.
    Uren, N. C. (1999). Manganese. In K. I. Peverill, L. A. Sparrow, & D. J. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 287–294). Collingwood: CSIRO.Google Scholar
  159. 159.
    Uren, N. C. (2007). Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In R. Pinton, R. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (2nd ed., pp. 1–21). Boca Raton: CRC Press.Google Scholar
  160. 160.
    Uren, N. C., & Edwards, L. B. (1977). The effect of soil pH and zinc contamination on the availability of manganese to oats. (Unpublished).Google Scholar
  161. 161.
    Uren, N. C., & Leeper, G. W. (1978). Microbial oxidation of divalent manganese. Soil Biology and Biochemistry, 10, 85–87.Google Scholar
  162. 162.
    Uren, N. C., & Reisenauer, H. M. (1988). The role of root exudates in nutrient acquisition. Advanced Plant Nutrition, 3, 79–114.Google Scholar
  163. 163.
    Uren, N. C., Asher, C. J., & Longnecker, N. E. (1988). Techniques for research on manganese in soil-plant systems. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 309–328). Dordrecht: Kluwer Academic.Google Scholar
  164. 164.
    Villalobos, M., Toner, B., Bargar, J., & Sposito, G. (2003). Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochimica et Cosmochimica Acta, 67, 2649–2662.Google Scholar
  165. 165.
    Villalobos, M., Bargar, J., & Sposito, G. (2005). Trace metal retention on biogenic manganese oxide nanoparticles. Elements, 1, 223–226.Google Scholar
  166. 166.
    Wadsley, A. D., & Walkley, A. (1951). The structure and reactivity of the oxides of manganese. Reviews of Pure and Applied Chemistry, 1, 203–213.Google Scholar
  167. 167.
    Waksman, S. A. (1938). Humus (2nd ed.). London: Baillière, Tyndall and Cox.Google Scholar
  168. 168.
    Walsh, T, Ryan, P., & Fleming, G. A. (1956). Cobalt deficiency in relation to weathering processes in soils. Transactions of the 6th international congress of soil science Paris, Commissions I & II, pp. 771–779.Google Scholar
  169. 169.
    Walter, K. H. (1988). Manganese fertilizers. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 225–241). Dordrecht: Kluwer Academic.Google Scholar
  170. 170.
    Wang, W., Shao, Z., Liu, Y., & Wang, G. (2009). Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium – Brachybacterium sp. strain Mn32. Microbiology, 155, 1989–1996.Google Scholar
  171. 171.
    Wendling, L. A., Kirby, K. J., & McLaughlin, M. J. (2008). A novel technique to determine cobalt exchangeability in soils using isotope dilution. Environmental Science and Technology, 42, 140–146.Google Scholar
  172. 172.
    Wendling, L. A., Ma, Y., Kirby, K. J., & McLaughlin, M. J. (2009). A predictive model of the effects of aging on cobalt fate and behavior in soil. Environmental Science and Technology, 43, 135–141.Google Scholar
  173. 173.
    Whelan, G., Sims, R. C., & Murarka, I. P. (1995). Interactions between manganese oxides and multiple-ringed aromatic compounds. In P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGill, & A. L. Page (Eds.), Environmental impact of soil component interactions: Natural and anthropogenic organics (pp. 345–362). Boca Raton: CRC Lewis Publishers.Google Scholar
  174. 174.
    Wilson, D. E. (1980). Surface and complexation effects on the rate of Mn(II) oxidation in natural waters. Geochimica et Cosmochimica Acta, 44, 1311–1317.Google Scholar
  175. 175.
    Xu, L., Xu, C., Zhao, M., Qiu, Y., & Sheng, G. D. (2008). Oxidative removal of aqueous steroid estrogens by manganese oxides. Water Research, 42, 5038–5044.Google Scholar
  176. 176.
    Zhang, L.-M., Liu, F., Tan, W.-F., Feng, X.-H., Zhu, Y.-G., & He, J. (2008). Microbial DNA extraction and analyses of soil iron-manganese nodules. Soil Biology and Biochemistry, 40, 1364–1369.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Agricultural SciencesLa Trobe UniversityBundooraAustralia

Personalised recommendations