Advanced Configurations and Applications

Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 32)

Abstract

Chapter 8 presents some advanced applications of load-pull and source-pull systems. The major emphasis of this chapter is on multi-tone and modulated load-pull systems and their applications. Subsequently, a six-port based transistor noise characterization system is described. A transistor based mixer’s characterization technique is also presented.

Keywords

Reflection Coefficient Noise Figure Local Oscillator Noise Receiver Arbitrary Waveform Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.J. Pelk, L.C.N. de Vreede, M. Spirito, J.H. Jos, Base-band impedance control and calibration for on-wafer linearity measurements, in 63rd ARFTG Conference (June 1994), pp. 35–40 Google Scholar
  2. 2.
    H. Arthaber, M.L. Mayer, G. Mageri, An active load-pull setup for broadband signals using digital baseband processing for the active loop. Int. J. RF Microw. Computer-Aided Eng. 18(6), 574–581 (2008) CrossRefGoogle Scholar
  3. 3.
    M.S. Hashmi, J. Benedikt, P.J. Tasker, Impact of group delay on the load emulation in multi-tone active envelope load-pull system. Aust. J. Electr. Electron. Eng. 7(1), 83–88 (2010) Google Scholar
  4. 4.
    R. Hajji, F. Beauregard, F.M. Ghannouchi, Multi-tone power intermodulation load-pull characterization of microwave transistors suitable for linear SSPA’s design. IEEE Trans. Microw. Theory Tech. 45(7), 1093–1099 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    F.M. Ghannouchi, G. Zhao, F. Beauregard, Simultaneous load-pull of intermodulation and output power under two-tone excitation for accurate SSPAs design. IEEE Trans. Microw. Theory Tech. 42(6), 929–934 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    P. Ghanipour, S. Stapleton, J. Kim, Load-pull characterization using different digitally modulated stimuli. IEEE Microw. Wirel. Compon. Lett. 17(5), 400–402 (2007) CrossRefGoogle Scholar
  7. 7.
    M. Spirito, M.J. Pelk, F. van Rijs, S.J.C.H. Theeuwen, D. Hartskeeri, L.C.N. de Vreede, Active harmonic load-pull for on-wafer out-of-band device linearity optimization. IEEE Trans. Microw. Theory Tech. 54(12), 4225–4235 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    D. Le, F.M. Ghannouchi, Multitone characterization and design of FET resistive mixers based on combined active source-pull/load-pull techniques. IEEE Trans. Microw. Theory Tech. 46(9), 1201–1208 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    M. Marchetti, M.J. Pelk, K. Buisman, W. Neo, M. Spirito, L. de Vreede, Active harmonic load-pull with realistic wideband communications signals. IEEE Trans. Microw. Theory Tech. 56(12), 2979–2988 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    B. Noori, P. Hart, J. Wood, P.H. Aaen, M. Guyonnet, M. Lefevre, J.A. Pla, J. Jones, Load-pull measurements using modulated signals, in 36th European Microwave Conference, Paris, France (2005), pp. 1594–1597 Google Scholar
  11. 11.
    M.S. Hashmi, S.J. Hashim, S. Woodington, T. Williams, J. Benedikt, P.J. Tasker, Active envelope load pull system suitable for high modulation rate multi-tone applications, in 3rd International Microwave Monolithic Integrated Circuit Workshop, Malaga, Spain (Nov. 2008), pp. 93–96 Google Scholar
  12. 12.
    Maury Microwave Corporation, Active harmonic load-pull with realistic wideband communications signals, Application Note 5A-044, June 2010 Google Scholar
  13. 13.
    C. Tsironis, Two-tone intermodulation measurements using computer controlled microwave tuner. Microw. J. 32, 161 (1989) Google Scholar
  14. 14.
    J. Jacobi, IMD still unclear after 20 years, in Microwaves & RF (Nov. 1986), pp. 119–126 Google Scholar
  15. 15.
    J.G. Freed, Equations provide accurate third-order IMD analysis, in Microwaves & RF (Aug. 1992), pp. 75–84 Google Scholar
  16. 16.
    M. Leffel, Intermodulation distortion in a multi-signal environment, in RF Design (June 1995), pp. 78–83 Google Scholar
  17. 17.
    R. Hajji, F. Beauregard, F.M. Ghannouchi, Multi-tone characterization for intermodulation and distortion analysis, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, San Francisco, CA (June 1996), pp. 1691–1694 Google Scholar
  18. 18.
    L. Cellai, A. Greco, Optimal phase relationship aids IM testing, in Microwaves & RF (July 1996), pp. 56–61 Google Scholar
  19. 19.
    M.S. Hashmi, F.M. Ghannouchi, P.J. Tasker, K. Rawat, Highly reflective load-pull. IEEE Microw. Mag. 12(4), 96–107 (2011) CrossRefGoogle Scholar
  20. 20.
    G.P. Locatelli, De-embedding techniques for device characterization. Alta Freq. 57(5), 267–272 (1988) Google Scholar
  21. 21.
    M.A. Maury Jr., S.L. Mar, G.R. Simpson, TRL calibration of vector automatic network analyzers. Microw. J. 30(5), 382–387 (1987) Google Scholar
  22. 22.
    K.S. Kundert, A.S. Vincentelli, Simulation of nonlinear circuits in the frequency domain. IEEE Trans. Computer-Aided Des. 5, 521–535 (1986) CrossRefGoogle Scholar
  23. 23.
    W.R. Curtice, GaAs MESFET modeling and nonlinear CAD. IEEE Trans. Microw. Theory Tech. 36, 220–230 (1988) ADSCrossRefGoogle Scholar
  24. 24.
    X. Cui, S.J. Doo, P. Roblin, G.H. Jessen, J. Strahler, Real-time active load-pull of the 2nd and 3rd harmonics for interactive design of non-linear power amplifiers, in 68th ARFTG Conference, Colorado, USA (Nov. 2006), pp. 29–42 Google Scholar
  25. 25.
    G.P. Bava, U. Pisani, V. Pozzolo, Active load technique for load-pull characterization at microwave frequencies. IET Electron. Lett. 18(4), 178–180 (1982) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Takayama, A new load-pull characterisation method for microwave power transistors, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest (1976), pp. 218–220 Google Scholar
  27. 27.
    F. Verbeyst, M.V. Bossche, Real-time and optimal PA characterization speeds up PA design, in 34th European Microwave Conference, Amsterdam, Netherlands (2004), pp. 431–434 Google Scholar
  28. 28.
    P. Roblin, Seok Joo Doo, Xian Cui, G.H. Jessen, D. Chaillot, J. Strahler, New ultra-fast real-time active load-pull measurements for high speed RF power amplifier design, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Honolulu, USA (June 2007), pp. 1493–1496 Google Scholar
  29. 29.
    J. Sevic, M.B. Steer, A.M. Pavio, Large-signal automated load-pull of adjacent-channel power ratio for digital wireless communication systems, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest (1996), pp. 763–766 Google Scholar
  30. 30.
    C. Clark, Time-domain envelope measurement technique with application to wideband power amplifier modelling. IEEE Trans. Microw. Theory Tech. 46(12), 2351–2540 (1998) CrossRefGoogle Scholar
  31. 31.
    O. Väänänen, J. Vankka, K. Halonen, Effect of Clipping in Wideband CDMA System and Simple Algorithm for Peak Windowing (Helsinki University of Technology, Helsinki, 2002) Google Scholar
  32. 32.
    D.E. Stoneking, R.J. Trew, J.B. Yan, Load pull characteristics of GaAs MESFETs calculated using an analytic, physics based large signal device model, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest (1998), pp. 1057–1060 Google Scholar
  33. 33.
    M.S. Hashmi et al., Active envelope load pull solution addressing the RF device multi-tone characterization problem, in IEEE MTT-11 Design Competition, Atlanta, USA (June 2008). http://www.mtt.org/mtt11/ims_award.htm Google Scholar
  34. 34.
    S.J. Hashim, M.S. Hashmi, T. Williams, S. Woodington, J. Benedikt, P.J. Tasker, Active envelope load-pull for wide-band multi-tone stimulus incorporating delay compensation, in 34th European Microwave Conference, Amsterdam, Netherlands (2008), pp. 317–320 Google Scholar
  35. 35.
    S.J. Hashim, M.S. Hashmi, J. Benedikt, P.J. Tasker, Effect of impedance variation around the fundamental on pa distortions characteristics under wideband stimuli, in IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, Malaysia (Dec. 2010), pp. 1115–1118 CrossRefGoogle Scholar
  36. 36.
    T. Williams, O. Mojon, S. Woodington, J. Lees, M.F. Barciela, J. Benedikt, P.J. Tasker, A robust approach for comparison and validation of large signal measurement systems, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Atlanta, USA (June 2008), pp. 257–260 Google Scholar
  37. 37.
    D. Le, F.M. Ghannouchi, Noise measurements of microwave transistors using an uncalibrated mechanical stub tuner and a built-in reverse six-port reflectometer. IEEE Trans. Instrum. Meas. 44(4), 847–852 (1995) CrossRefGoogle Scholar
  38. 38.
    F.M. Ghannouchi, R.G. Bosisio, Source-pull/load-pull oscillator measurements at microwave/MMwave frequencies. IEEE Trans. Instrum. Meas. 41(1), 32–35 (1992) CrossRefGoogle Scholar
  39. 39.
    B. Peterson, Spectrum analysis basics, Hewlett-Packard Application Note 150, p. 2634, and pp. 38–40 Google Scholar
  40. 40.
    S.A. Maas, A GaAs MESFET mixer with very low intermodulation. IEEE Trans. Microw. Theory Tech. 35, 429–435 (1987) ADSGoogle Scholar
  41. 41.
    H.H.G. Zirath, C.-Y. Chi, N. Rorsman, G.M. Rebeiz, A 40 GHz integrated quasi-optical slot HFET mixer. IEEE Trans. Microw. Theory Tech. 42, 2492–2497 (1994) ADSCrossRefGoogle Scholar
  42. 42.
    K. Yhland, N. Rorsman, H.H.G. Zirath, Novel single device balanced resistive HEMT mixers. IEEE Trans. Microw. Theory Tech. 43, 2863–2867 (1995) ADSCrossRefGoogle Scholar
  43. 43.
    R.S. Virk, S.A. Maas, Modeling MESFET for intermodulation analysis of resistive FET mixers. in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Orlando, USA, vol. 3 (May 1995), pp. 1247–1250 Google Scholar
  44. 44.
    E.W. Lin, W.H. Ku, Device considerations and modeling for the design of an INP-based MODFET millimeter-wave resistive mixer with superior conversion efficiency. IEEE Trans. Microw. Theory Tech. 43(Aug.), 1951–1959 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    L. Ricco, G.P. Locatelli, F. Calzavara, Constant intermodulation Loci measure for power devices using HP-8510 network analyzer, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, New York, USA (May 1988), pp. 221–224 Google Scholar
  46. 46.
    D. Le, P. Poire, F.M. Ghannouchi, Six-port based active source-pull measurement technique. IOP Meas. Sci. Technol. 9, 1336–1342 (1998) ADSGoogle Scholar
  47. 47.
    J.D. Hunter, P.I. Somlo, Explicit six-port calibration method using five standards. IEEE Trans. Microw. Theory Tech. MTT-39, 69–72 (1985) ADSCrossRefGoogle Scholar
  48. 48.
    F.M. Ghannouchi, R. Larose, R.G. Bosisio, A new multiharmonic loading method for large signal microwave transistor characterization. IEEE Trans. Microw. Theory Tech. 39(June), 986–992 (1991) ADSCrossRefGoogle Scholar
  49. 49.
    F. van Rijs, R. Dekker, H.A. Visser, H.G.A. Huizing, D. Hartskeer, P.H.C. Magnee, R. Dondero, Influence of output impedance on power added efficiency of si-bipolar power transistors, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Boston, USA (June 2000), pp. 1945–1948 Google Scholar
  50. 50.
    S. Liwei, L.E. Larson, An Si-SiGe BiCMOS direct-conversion mixer with second-order and third-order nonlinearity cancellation for WCDMA applications. IEEE Trans. Microw. Theory Tech. 51(11), 2211–2220 (2003) ADSCrossRefGoogle Scholar
  51. 51.
    V. Aparin, C. Persico, Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Anaheim, USA (June 1999), pp. 977–980 Google Scholar
  52. 52.
    Maury Microwave Corporation, http://www.maurymw.com/
  53. 53.
  54. 54.
    G.L. Madonna, M. Pirola, A. Ferrero, U. Pisani, Testing microwave devices under different source impedance values—a novel technique for on-line measurement of source and device reflection coefficients. IEEE Trans. Instrum. Meas. 49(2), 285–289 (2000) CrossRefGoogle Scholar
  55. 55.
    M.J. Pelk, L.C.N. de Vreede, M. Spirito, J.H. Jos, Base-band impedance control and calibration for on-wafer linearity measurements, in 63rd ARFTG Conference, Forth Worth, USA (June 2004), pp. 35–40 CrossRefGoogle Scholar
  56. 56.
    W.C.E. Neo, J. Qureshi, M.J. Pelk, J.R. Gajadharsing, L.C.N. de Vreede, A mixed-signal approach towards linear and efficient N-way Doherty amplifiers. IEEE Trans. Microw. Theory Tech. 55(5), 866–879 (2007) ADSCrossRefGoogle Scholar
  57. 57.
    3G TS 25.141 base station conformance testing (FDD), Tech. specification group radio access networks, 3rd generation partnership project, Valbonne, France, Tech. Spec., Rev. V3.1.0, 2000 Google Scholar
  58. 58.
    A. Ferrero, U. Pisani, An improved calibration technique for on-wafer large-signal transistor characterization. IEEE Trans. Instrum. Meas. 42(2), 360–364 (1993) CrossRefGoogle Scholar
  59. 59.
    R. Marchesani, Digital precompensation of imperfections in quadrature modulators. IEEE Trans. Commun. 48(4), 552–556 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering, Intelligent RF Radio LaboratoryUniversity of CalgaryCalgaryCanada

Personalised recommendations