The Atmospheric Response to Solar Variability: Simulations with a General Circulation and Chemistry Model for the Entire Atmosphere

  • Hauke Schmidt
  • Jens Kieser
  • Stergios Misios
  • Aleksandr N. Gruzdev
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

The coupled general circulation and chemistry model HAMMONIA and the MPI-ESM, consisting of the MAECHAM5 atmospheric GCM and the ocean model MPIOM, have been applied in a multitude of setups to study the response of the earth system to the variable forcing from the sun. This paper motivates the use of complex entire atmosphere models for the study of solar-terrestrial relations, and presents numerical results concerning solar rotational forcing, the response of the atmosphere-ocean system up to the lower thermosphere to 11-year forcing, and the response to particle precipitation. An issue analyzed in more detail is the so-called “secondary” response maximum in equatorial lower stratospheric ozone and temperature. Comparing numerical experiments with a variety of simulation setups it is argued that solar signals in this atmospheric region are easily obscured by variability stemming in particular from ENSO. However, simulations with solar variability as the only variable forcing suggest that indeed, the secondary maximum is of solar origin.

Keywords

Middle Atmosphere Atmospheric Response Secondary Maximum Solar Variability Lower Thermosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under grants SCHM2158/1-(1-3). Most of the numerical simulations have been performed on the computers and with the support of the German Climate Computing Centre (DKRZ). The authors would like to thank Guy P. Brasseur and Marco A. Giorgetta for many valuable discussions during the course of the project, and Heinz-Jürgen Punge for help with the MLR.

References

  1. Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Bruehl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., & Tian, W. (2008). Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. Journal of Geophysical Research, 113(D11). doi: 10.1029/2007JD009391.
  2. Baldwin, M. P., & Dunkerton, T. J. (1999). Propagation of the Arctic Oscillation from the stratosphere to the troposphere. Journal of Geophysical Research, 104, 30937–30946. doi: 10.1029/1999JD900445. CrossRefGoogle Scholar
  3. Beig, G., Fadnavis, S., Schmidt, H., & Brasseuer, G. P. (2012). Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model. Journal of Geophysical Research, 117, D00P10. doi: 10.1029/2011JD015697. CrossRefGoogle Scholar
  4. Boville, B. A. (1995). Middle atmosphere version of the CCM2 (MACCM2): annual cycle and interannual variability. Journal of Geophysical Research, 100, 9017–9039. CrossRefGoogle Scholar
  5. Cagnazzo, C., Manzini, E., Giorgetta, M. A., Forster, P. M. D. F., & Morcrette, J. J. (2007). Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model. Atmospheric Chemistry & Physics, 7, 2503–2515. CrossRefGoogle Scholar
  6. Calvo, N., Garcia, R. R., Randel, W. J., & Marsh, D. R. (2010). Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. Journal of the Atmospheric Sciences, 67, 2331–2340. doi: 10.1175/2010JAS3433.1. CrossRefGoogle Scholar
  7. Camp, C. D., & Tung, K. K. (2007). Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophysical Research Letters, 34, 14703–14706. doi: 10.1029/2007GL030207. CrossRefGoogle Scholar
  8. Chandra, S., & McPeters, R. D. (1994). The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites. Journal of Geophysical Research, 99, 20665. doi: 10.1029/94JD02010. CrossRefGoogle Scholar
  9. Chiodo, G., & Schmidt, H. (2012). 11-yr solar-cycle effects in transient hammonia simulations. In preparation. Google Scholar
  10. de Grandpré, J., Beagly, S. R., Fomichev, V. I., Griffioen, E., McConnell, J. C., & Medvedev, A. S. (2000). Ozone climatology using interactive chemistry: results from the Canadian middle atmosphere model. Journal of Geophysical Research, 105, 26475–26491. CrossRefGoogle Scholar
  11. Emmert, J. T., Picone, J. M., & Meier, R. R. (2008). Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-earth objects. Geophysical Research Letters, 35, L05101. doi: 10.1029/2007GL032809. CrossRefGoogle Scholar
  12. Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., & Yoshiki, M. (2006). Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 111(D10), D22308. doi: 10.1029/2006JD007327. CrossRefGoogle Scholar
  13. Eyring, V., Shepherd, T. G., & Waugh, D. W. (Eds.) (2010). SPARC report on the evaluation of chemistry-climate models. Google Scholar
  14. Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., & Sinclair, R. W. (1980). Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. Journal of the Atmospheric Sciences, 37, 2265–2297. CrossRefGoogle Scholar
  15. Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C., McFarlane, N. A., & Shepherd, T. G. (2002). The extended Canadian middle atmosphere model: zonal mean climatology and physical parameterizations. Journal of Geophysical Research, 107. doi: 10.1029/2001JD000479.
  16. Frame, T. H. A., & Gray, L. J. (2010). The 11-year solar cycle in ERA-40 data: an update to 2008. Journal of Climate, 23, 2213–2222. doi: 10.1175/2009JCLI3150.1. CrossRefGoogle Scholar
  17. Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., & Wissing, J. M. (2011). Composition changes after the “Halloween” solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmospheric Chemistry & Physics Discussions, 11, 9407–9514. doi: 10.5194/acpd-11-9407-2011. CrossRefGoogle Scholar
  18. Geller, M. A., & Alpert, J. C. (1980). Planetary wave coupling between the troposphere and the middle atmosphere as a possible Sun-weather mechanism. Journal of the Atmospheric Sciences, 37, 1197–1215. doi: 10.1175/1520-0469(1980)037<1197:PWCBTT>2.0.CO;2. CrossRefGoogle Scholar
  19. Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., & Yiou, P. (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1003. CrossRefGoogle Scholar
  20. Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M., & Bengtsson, L. (2006). Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. Journal of Climate, 19, 3882–3901 doi: 10.1175/JCLI3830.1. CrossRefGoogle Scholar
  21. Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., & White, W. (2010). Solar influences on climate. Reviews of Geophysics, 48, RG4001. CrossRefGoogle Scholar
  22. Gruzdev, A. N., Schmidt, H., & Brasseur, G. P. (2009). The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model. Atmospheric Chemistry and Physics, 9, 595–614. CrossRefGoogle Scholar
  23. Haigh, J., Blackburn, M., & Day, R. (2005). The response of tropospheric circulation to perturbations in lower-stratospheric temperature. Journal of Climate, 18, 3672–3685. CrossRefGoogle Scholar
  24. Haigh, J. D. (1996). The impact of solar variability on climate. Science, 272, 981–984. doi: 10.1126/science.272.5264.981. CrossRefGoogle Scholar
  25. Haigh, J. D., & Blackburn, M. (2006). Solar influences on dynamical coupling between the stratosphere and troposphere. Space Science Reviews, 125, 331–344. CrossRefGoogle Scholar
  26. Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., & Woods, T. N. (2009). Trends in solar spectral irradiance variability in the visible and infrared. Geophysical Research Letters, 36, L07801. doi: 10.1029/2008GL036797. CrossRefGoogle Scholar
  27. Hood, L. L., Soukharev, B. E., & McCormack, J. P. (2010). Decadal variability of the tropical stratosphere: secondary influence of the El Niño-Southern Oscillation. Journal of Geophysical Research, 115(D14), D11113. doi: 10.1029/2009JD012291. CrossRefGoogle Scholar
  28. Kieser, J. (2011). The influence of precipitating energetic particles on the entire atmosphere—Simulations with HAMMONIA. Ph.D. thesis, Univ. of Hamburg. Google Scholar
  29. Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., & Simmons, A. J. (2007). Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. Journal of Geophysical Research, 112(D20). doi: 10.1029/2006JD007879.
  30. Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107. doi: 10.1029/2002JD002224.
  31. Labitzke, K. (1987). Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophysical Research Letters, 14, 535–537. doi: 10.1029/GL014i005p00535. CrossRefGoogle Scholar
  32. Labitzke, K. (2005). On the solar cycle-QBO relationship: a summary. Journal of Atmospheric and Solar-Terrestrial Physics, 67(1–2), 45–54. CrossRefGoogle Scholar
  33. Labitzke, K., & van Loon, H. (1988). Associations between the 11-year solar cycle, the QBO and the atmosphere, part I: the troposphere and the stratosphere in the northern hemisphere winter. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 203–210. CrossRefGoogle Scholar
  34. Lean, J. (2000). Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophysical Research Letters, 27, 2425–2428. CrossRefGoogle Scholar
  35. Lean, J., & Rind, D. H. (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters, 35, L18701. CrossRefGoogle Scholar
  36. Lee, H., & Smith, A. K. (2003). Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades. Journal of Geophysical Research, 108. doi: 10.1029/2001JD001503.
  37. Manzini, E., McFarlane, N. A., & McLandress, C. (1997). Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. Journal of Geophysical Research, 102, 25751–25762. CrossRefGoogle Scholar
  38. Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. Journal of Climate, 19(16), 3863–3881. CrossRefGoogle Scholar
  39. Marsh, D. R., & Garcia, R. R. (2007). Attribution of decadal variability in lower-stratospheric tropical ozone. Geophysical Research Letters, 34. doi: 10.1029/2007GL030935.
  40. Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112(D23). doi: 10.1029/2006JD008306.
  41. Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., & Röske, F. (2003). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5, 91–127. CrossRefGoogle Scholar
  42. Matthes, K., Langematz, U., Gray, L. J., Kodera, K., & Labitzke, K. (2004). Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). Journal of Geophysical Research, 109. doi: 10.1029/2003JD004012.
  43. Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., & Walters, S. (2010). Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. Journal of Geophysical Research, 115(D14), D18110. doi: 10.1029/2009JD013020. CrossRefGoogle Scholar
  44. Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., & van Loon, H. (2009). Amplifying the pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 1114–1118. doi: 10.1126/science.1172872. CrossRefGoogle Scholar
  45. Misios, S., & Schmidt, H. (2012, in press). Mechanisms involved in the amplification of the 11-yr solar cycle signal in the tropical Pacific Ocean. Journal of Climate. doi: 10.1175/JCLI-D-11-00261.1.
  46. Qian, L., Roble, R. G., Solomon, S. C., & Kane, T. J. (2006). Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophysical Research Letters, 33, L23705. doi: 10.1029/2006GL027185. CrossRefGoogle Scholar
  47. Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., N. H. & Russell, J. M. (2007). Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112. Google Scholar
  48. Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., Gillett, N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D. J., Thompson, D. W. J., Wu, F., & Yoden, S. (2009). An update of observed stratospheric temperature trends. Journal of Geophysical Research, 114(D13), D02107. doi: 10.1029/2008JD010421. CrossRefGoogle Scholar
  49. Rasch, P. J., Boville, B. A., & Brasseur, G. P. (1995). A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. Journal of Geophysical Research, 100, 9041–9071. CrossRefGoogle Scholar
  50. Reid, G. C., Solomon, S., & Garcia, R. R. (1991). Response of the middle atmosphere to the solar proton events of August–December, 1989. Geophysical Research Letters, 18, 1019–1022. doi: 10.1029/91GL01049. CrossRefGoogle Scholar
  51. Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994). A solar EUV flux model for aeronomic calculations. Journal of Geophysical Research, 99, 8981–8992 (Correction, JGR, 99, 13283, 1994). CrossRefGoogle Scholar
  52. Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., & Tompkins, A. (2003). The atmospheric general circulation model ECHAM 5. Part I: model description (Tech. Rep. 349). MPI for Meteorology, Hamburg, Germany. Google Scholar
  53. Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., & Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19, 3771–3791. CrossRefGoogle Scholar
  54. Roy, I., & Haigh, J. D. (2010). Solar cycle signals in sea level pressure and sea surface temperature. Atmospheric Chemistry & Physics, 10, 3147–3153. CrossRefGoogle Scholar
  55. Schmidt, H., Brasseur, G. P., & Giorgetta, M. A. (2010). Solar cycle signal in a general circulation and chemistry model with internally generated quasi-biennial oscillation. Journal of Geophysical Research, 115(D14), D00I14. doi: 10.1029/2009JD012542. CrossRefGoogle Scholar
  56. Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., & Walters, S. (2006). The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19(16), 3903–3931. CrossRefGoogle Scholar
  57. Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, J. (1999). Solar cycle variability, ozone, and climate. Science, 284, 305–308. CrossRefGoogle Scholar
  58. Smith, A. K., & Matthes, K. (2008). Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO. Journal of Geophysical Research, 113(D12), D05311. doi: 10.1029/2007JD009051. CrossRefGoogle Scholar
  59. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.) (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. Google Scholar
  60. Soukharev, B. E., & Hood, L. L. (2006). Solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models. Journal of Geophysical Research, 111. doi: 10.1029/2006JD007107.
  61. Steil, B., Brühl, C., Manzini, E., Crutzen, P. J., Lelieveld, J., Rasch, P. J., Roeckner, E., & Krüger, K. (2003). A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data. Journal of Geophysical Research, 108(D9), 4290. doi: 10.1029/2002JD002971. CrossRefGoogle Scholar
  62. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2009). A summary of the CMIP5 experiment design. http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor CMIP5 design.pdf.
  63. van Loon, H., Meehl, G. A., & Shea, D. J. (2007). Coupled air-sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research, 112(D2). doi: 10.1029/2006JD007378.
  64. Wissing, M., Kallenrode, M.-B., Kieser, J., Schmidt, H., Rietveld, M. T., Stroemme, A., & Erickson, P. T. (2011). Atmospheric ionization module osnabrück (aimos) 3: comparison of electron density simulations by aimos/hammonia and incoherent scatter radar measurements. Journal of Geophysical Research, 116, A08305. doi: 10.1029/2010JA016300. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hauke Schmidt
    • 1
  • Jens Kieser
    • 1
  • Stergios Misios
    • 1
  • Aleksandr N. Gruzdev
    • 2
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.A. M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations