Strengthening Mechanisms

  • Joshua Pelleg
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 190)

Abstract

The strengthening of materials is of great importance for engineering applications. Construction parts are designed not only to endure the anticipated forces, which are intentionally applied (those they are expected to withstand while in service), but also any sudden, short-duration forces that might cause catastrophic failure, if not taken into account. In order to avoid the probability of such failure, liberal safety factors are generally adopted by designers. Their approach is to strengthen materials beyond the magnitude which would be sufficient to prevent failure, even if a steady force was exerted during the entire period of their use. This extra strength value constitutes the safety factor required for ensuring the safe use of a construction part, even in the event that a sudden force of larger magnitude appeared during service. There are several mechanisms by which materials may be strengthened, listed below:

References

  1. L.V. Azàroff, Elements of X-ray Crystallography, International Student Edition (McGraw-Hill Book Company, New York, 1968)Google Scholar
  2. L.M. Brown, R.K. Ham, in Strengthening Mechanism in Crystals, ed. by E. Kelly, R. B. Nicholson (Wiley, New York, 1971), p. 10Google Scholar
  3. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc, Reading, 1956)Google Scholar
  4. R.L. Fleischer, The Strengthening of Metals (Reinhold Publishing Co., New York, 1964), p. 93Google Scholar
  5. J. Friedel, Dislocation interaction and internal strains, in Internal Stresses and Fatigue in Metals (Elsevier, Amsterdam, 1959), p. 220Google Scholar
  6. J. Friedel, Dislocations (Pergamon Press, Oxford, 1964)MATHGoogle Scholar
  7. P.B. Hirsch, Relation Between the Structure and Mechanical Properties of Metals (H.M.S.O, London, 1963)Google Scholar
  8. J.P. Hirth, J. Lothe, Theory of Dislocations (Krieger, Malabar, 1992)Google Scholar
  9. R.W.K. Honeycombe, The Plastic Deformation of Metals (Edward Arnold, London, 1975)Google Scholar
  10. F.J. Humphreys, P.B. Hirsch, Proc. Phys. R. Soc. A318, 73, 205 in P.B. Hirsch “Work Hardening” in The Physics of Metals, 2nd edn., ed. by P.B. Hirsch (Cambridge University Press, London, 1975), p. 207Google Scholar
  11. N.F. Mott, F.R.N. Nabarro, in Bristol Conference on Strength of Solids (The Physical Society, London, 1948), p. 1Google Scholar
  12. A. D. Rollett, H. Garmestani, G. Branco, Polycrystal plasticity-multiple slip, Advanced Characterization and Microstructural Analysis (Carnegie Mellon, Department of Materials Science and Engineering, Spring, 2005)Google Scholar
  13. A. Seeger, Glide and work hardening in face-centered and hexagonal close-packed metals, in Dislocations and Mechanical Properties of Crystals (Wiley, New York, 1957), p. 243Google Scholar

Further References

  1. K. Akhtar, A. Teghtsoonian, Acta Met. 19, 655 (1971)Google Scholar
  2. H. Alexander, P. Haasen, Acta Metall. 9, 1001 (1961)CrossRefGoogle Scholar
  3. P.N.B. Anongba, J. Bonneville, J.L. Martin, Acta Metal. Matter. 41, 2897 (1993)CrossRefGoogle Scholar
  4. C.J. Ball, Philos. Mag. 2, 1011 (1957)CrossRefGoogle Scholar
  5. S. Bargmann, M. Ekh, B. Svendsen, K. Runesson, Tech. Mech. 30, 316 (2010)Google Scholar
  6. Z.S. Basisnski, Philos. Mag. 4, 393 (1959)CrossRefGoogle Scholar
  7. J.L. Bassani, Texture Microstruct. 14–18, 1097 (1991)CrossRefGoogle Scholar
  8. F.P. Bullen, C.B. Rogers, Philos. Mag. 11, 191 (1965)Google Scholar
  9. D. Caillard, A. Couret, Microsc. Res. Tech. 72, 261 (2009)CrossRefGoogle Scholar
  10. H. Conrad, J. Metals 16, 582 (1964)Google Scholar
  11. A.H. Cottrell, R.J. Stokes, Proc. R. Soc. Lond. A 318, 45 (1970)CrossRefGoogle Scholar
  12. A.M. Cuitino, Mater. Sci. Eng. A216, 104 (1996)Google Scholar
  13. G. Das, T.E. Mitchell, Metall. Trans. 4, 1405 (1973)CrossRefGoogle Scholar
  14. J. Diehl, Z. Metall. 47, 331 (1956)Google Scholar
  15. M. Ekh, M. Grymer, K. Runesson, T. Svedberg, Int. J. Numer. Method Eng. 72, 197 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, Philos. Mag. 42, 351 (1951)MathSciNetMATHGoogle Scholar
  17. L. Evers, W. Brekelmanns, M. Geers, J. Mech. Phys. Solid 52, 2379 (2004)MATHCrossRefGoogle Scholar
  18. R.L. Fleischer, Acta Metall. 9, 996 (1961)CrossRefGoogle Scholar
  19. R.L. Fleischer, Acta Metall. 10, 835 (1962)CrossRefGoogle Scholar
  20. R.L. Fleischer, Acta Metall. 11, 203 (1963)CrossRefGoogle Scholar
  21. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, E. Arzt, Mater. Sci. Eng. A 489, 319 (2008)CrossRefGoogle Scholar
  22. J. Friedel, Philos. Mag. 46, 1169 (1955)Google Scholar
  23. J. Friedel, Proc. R. Soc. A242, 147 (1957)Google Scholar
  24. A. George, Rev. Phys. Appl. 23, 479 (1988). H.O.K.KCrossRefGoogle Scholar
  25. H. Gleiter, E. Hornbogen, Mater. Sci. Eng. 2, 285 (1967–1968)Google Scholar
  26. F. Guiu, P.L. Pratt, Phys. Stat. Sol. 16, 539 (1966)Google Scholar
  27. P. Haasen, Czech. J. Phys. B38, 494 (1988)Google Scholar
  28. N. Hansen, Scr. Mater. 51, 801 (2004)CrossRefGoogle Scholar
  29. N. Hansen, Adv. Eng. Mater. 7, 815 (2005)CrossRefGoogle Scholar
  30. P.B. Hirsch, Philos. Mag. 7, 67 (1962)CrossRefGoogle Scholar
  31. P.B. Hirsch, Disc. Faraday Soc. 38, 111 (1964)CrossRefGoogle Scholar
  32. P.B. Hirsch, F.J. Humphreys, Proc. R. Soc. A242, 147 (1957)Google Scholar
  33. P.B. Hirsch, D.H. Warrington, Philos. Mag. 6, 735 (1961)CrossRefGoogle Scholar
  34. B.P. Kashyap, K. Tangri, Acta Metal. Matter 43, 3971 (1995)CrossRefGoogle Scholar
  35. A.S. Keh, Philos. Mag. 12, 9 (1965)CrossRefGoogle Scholar
  36. H.O. Kirchner, Rev. Phys. Appl. 23, 475 (1988)CrossRefGoogle Scholar
  37. U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48, 171 (2003)CrossRefGoogle Scholar
  38. R.C. Koo, Acta Metall. 11, 1083 (1963)CrossRefGoogle Scholar
  39. D. Kuhlmann-Wilsdorf, N.R. Comins, Mater. Sci. Eng. 60, 7 (1983)CrossRefGoogle Scholar
  40. R. Kumar, L. Nicola, E. Van der Giessen, Mater. Sci. Eng. A 527, 7 (2009)CrossRefGoogle Scholar
  41. A. Lasalmonie, J.L. Strudel, J. Mater. Sci. 21, 1837 (1986)CrossRefGoogle Scholar
  42. F. F. Lavrent’ev, Yu. A. Pokhil, V. I. Startsev, Translated from Problemy Prochnosti, 10, 60 (1972)Google Scholar
  43. J.C.M. Li, Trans. TMS-AIME 227, 239 (1963)Google Scholar
  44. M.A. Meyers, E. Ashworth, Philos. Mag. A46, 737 (1982)Google Scholar
  45. T.E. Mitchell, Prog. Appl. Mater. Res. 6, 119 (1964)Google Scholar
  46. T.E. Mitchell, W.A. Spitzig, Acta Metall. 13, 1169 (1965)CrossRefGoogle Scholar
  47. T.E. Mitchell, R.A. Foxall, P.B. Hirsch, Philos. Mag. 8, 1895 (1963)CrossRefGoogle Scholar
  48. S.K. Mitra, J.E. Dorn, Trans. AIME 224, 1062 (1962)Google Scholar
  49. S.K. Mitra, P.W. Osborne, J.E. Dorn, Trans. AIME 221, 1206 (1961)Google Scholar
  50. N.F. Mott, Philos. Mag. 43, 1151 (1952)Google Scholar
  51. N.F. Mott, Trans. Metall. Soc. AIME 218, 962 (1962)Google Scholar
  52. N.F. Mott, F.R.N. Nabarro, Proc. Phys. Soc. 52, 86 (1940)CrossRefGoogle Scholar
  53. N.F. Mott, F.R.N. Nabarro, Bristol Conference on Strength of Solids (The Physical Society, London, 1948), p. 1Google Scholar
  54. B. Nicklas, H. Mecking, in ed. by P. Haasen et al., Proc. 5th ICSMA, Aachen, Germany (Pergamon Press, Oxford, 1979), p. 351Google Scholar
  55. A.C. Nunes, A. Rosen, J.E. Dorn, Trans. ASM 58, 38 (1965)Google Scholar
  56. W. Püschl, Prog. Mater. Sci. 47, 415 (2002)CrossRefGoogle Scholar
  57. X.G. Qiao, M.J. Starink, N. Gao, Mater. Sci. Eng. A 513–514, 52 (2009)Google Scholar
  58. R.P. Reed, Cryogenics 12, 259 (1972)CrossRefGoogle Scholar
  59. W. Schröter, H. Siethoff, Z. Metallk. 75 Google Scholar
  60. C. Scwink, Rev. Phys. Appl. 25, 395 (1988)CrossRefGoogle Scholar
  61. H. Siethoff, W. Schröter, Z. Metallk. 75, 475 (1984)Google Scholar
  62. R.J. Stokes, T.L. Johnston, J.C.M. Li, Trans. AIME 218, 655 (1960)Google Scholar
  63. H. Suzuki, S. Ikeda, S. Takeuchi, J. Phys. Soc. Jpn 11, 382 (1956)CrossRefGoogle Scholar
  64. G.I. Taylor, Proc. R. Soc. A145(362), 388 (1934)Google Scholar
  65. E. Votava, Phys. Status Sol. 5, 421 (1964)CrossRefGoogle Scholar
  66. H. Wiedersich, J. Metals 16, 425 (1964)Google Scholar
  67. B. Wielke, Phys. Status Sol. (a) 83, 241 (1976)CrossRefGoogle Scholar
  68. T.-Y. Wu, J.L. Bassani, C. Laird, Proc. R. Soc. Lond. A 435, 1 (1991)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Joshua Pelleg
    • 1
  1. 1.Materials EngineeringBen Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations