Communication Between Plant, Ectomycorrhizal Fungi and Helper Bacteria



Development of mutualistic symbioses between ectomycorrhizal fungi and their host trees involves multiple gene networks that are involved in a complex series of interdependent, sequential developmental steps. Through secreted signals and nutrient interactions, rhizospheric bacteria play a major role in the development of mycorrhizal symbioses. Current research into symbiosis development and functioning is aimed at understanding these plant–microbe interactions in the framework of environmental, developmental and physiological processes that underlie colonization and morphogenesis. After a brief introduction to the ectomycorrhizal symbiosis, the present chapter aims (1) to highlight recent work on the early signal exchange taking place between symbionts and their associated bacteria, and (2) to sketch out the way that functional genomics is altering our thinking about how soil microbes alter host functioning during ectomycorrhizal root development.


Auxins Effectors Secretome Gene expression Helper bacteria Mycorrhizosphere Root hairs Transduction pathways 



We thank colleagues at INRA-Nancy (France) for their input and collaboration, specifically Annegret Kohler, Claire Veneault-Fourrey and Judith Felten whose contributions made this work possible. The authors also thank Dr Krista Plett for careful reading of the manuscript. This project was funded by the Agence Nationale de la Recherche (project FungEffector, ANR-06-BLAN-0399) and Institut National de la Recherche Agronomique. This research was also sponsored by the Genomic Science Program of the US Department of Energy, Office of Science, Biological and Environmental Research under contract DE-AC05-00OR22725 (Plant-Microbe Interface).


  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  2. Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD (2006) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541PubMedCrossRefGoogle Scholar
  3. Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigoactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226PubMedCrossRefGoogle Scholar
  4. Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413PubMedCrossRefGoogle Scholar
  5. Bonas U, Stall RE, Staskawicz BJ (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136PubMedCrossRefGoogle Scholar
  6. Brulé C, Frey-Klett P, Pierrat JC, Courrier S, Gérard F, Lemoin M-C, Rousselet J-L, Sommer J, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694CrossRefGoogle Scholar
  7. Charvet-Candela V, Hitchin S, Ernst D, Sandermann J-H, Marmeisse R, Gay G (2002) Characterization of an AUX/IAA cDNA upregulated in Pinus pinaster roots in response to colonization by the ectomycorrhizal fungus hebeloma cylindrosporum. New Phytol 154:769–777CrossRefGoogle Scholar
  8. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136PubMedCrossRefGoogle Scholar
  9. Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, Preston GM, Frey-Klett P (2010) Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Microbiol Rep 3:203–210CrossRefGoogle Scholar
  10. Depuydt S, Hardtke C-S (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373PubMedCrossRefGoogle Scholar
  11. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029PubMedCrossRefGoogle Scholar
  12. Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755PubMedCrossRefGoogle Scholar
  13. Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A, Frey-Klett P (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep 2:560–568CrossRefGoogle Scholar
  14. Dou D, Kale SD, Wang X, Jiang RHY, Bruce NA, Arredondo PD, Zhang X, Tyler BM (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930–1947PubMedCrossRefGoogle Scholar
  15. Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005PubMedCrossRefGoogle Scholar
  16. Felten J, Martin F, Legué V (2011) Signalling in ectomycorrhizal symbiosis. In: Baluska F, Perotto S (eds) Signalling and communication in plant symbiosis. Springer-Verlag book series. Springer, Berlin, pp 123–142Google Scholar
  17. Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte J (2002) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Accaria holoserica with the Pisolithus albus. New Phytol 153:81–89CrossRefGoogle Scholar
  18. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent Pseudomonads associated with the Douglas fir-Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860PubMedGoogle Scholar
  19. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  20. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  21. Fries N, Serck-Hanssen K, Häll DL, Theander O (1987) Abietic acid, an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus (Boletaceae). Exp Mycol 11:360–363CrossRefGoogle Scholar
  22. Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47:331–340CrossRefGoogle Scholar
  23. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Page V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Christine A, Beveridge CA, Rameau C, Rochanges SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  24. Gotz C, Fekete A, Gebefuegi I, Forczek ST, Fuksova K, Li X, Englmann M, Gryndler M, Hartmann A, Matucha M, Schmitt-Kopplin P, Schroder P (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457PubMedCrossRefGoogle Scholar
  25. Hawes M-C, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133PubMedCrossRefGoogle Scholar
  26. Hawes M-C, Curlango-Rivera G, Wen F, White G, VanEtten H, Xiong Z (2011) Extracellular DNA: the tip of root defenses? Int J Exp Plant Biol 180:741–745Google Scholar
  27. Heupel S, Roser B, Kuhn H, Lebrun MH, Villalba F, Requena N (2010) Erl1, a novel era-like GTPase from Magnaporthe oryzae, is required for full root virulence and is conserved in the mutualistic symbiont Glomus intraradices. Mol Plant Microbe Interact 23:67–81PubMedCrossRefGoogle Scholar
  28. Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13PubMedCrossRefGoogle Scholar
  29. Horan DP, Chilvers GA (1990) Chemotropism: the key to ectomycorrhizal formation? New Phytol 116:297–301CrossRefGoogle Scholar
  30. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103PubMedCrossRefGoogle Scholar
  31. Jambois A, Dauphin A, Kawano T, Ditengou FA, Bouteau F, Legué V, Lapeyrie F (2005) Competitive antagonism between IAA and indole alkaloid hypaphorine must contribute to regulate ontogenesis. Physiol Plant 123:120–129CrossRefGoogle Scholar
  32. Johansson J, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  33. Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External phosphatidylinositol-3-phosphate mediates host cell entry by eukaryotic pathogen effectors. Cell 142:284–295PubMedCrossRefGoogle Scholar
  34. Kalinova J, Radova S (2009) Effect of rutin on the growth of Botrytis cinerea Alternaria alternata and Fusarium solani. Acta Phytopathol Entomol Hung 44:39–47CrossRefGoogle Scholar
  35. Kanneganti T-D, Bai X, Tsai C-W, Win J, Meulia T, Goodin M, Kamoun S, Hogenhout SA (2007) A functional genetic assay for nuclear trafficking in plants. Plant J 50:149–158PubMedCrossRefGoogle Scholar
  36. Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216PubMedCrossRefGoogle Scholar
  37. Khan R, Straney DC (1999) Regulatory signals influencing expression of the PDA1 gene of Nectria haematococca MPVI in culture and during pathogenesis of pea. Mol Plant-Microbe Interact 12:733–742CrossRefGoogle Scholar
  38. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Büking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  39. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209PubMedCrossRefGoogle Scholar
  40. Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedCrossRefGoogle Scholar
  41. Lagrange H, Jay-Allemand C, Lapeyrie F (2001) Rutin, the phenolglycoside from Eucalyptus root exudates stimulates Pisolithus hyphal growth at picomolor concentrations. New Phytol 150:349–355CrossRefGoogle Scholar
  42. Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903PubMedCrossRefGoogle Scholar
  43. Leveau JH, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65:238–250PubMedCrossRefGoogle Scholar
  44. Ludwig-Müller J, Bendel U, Thermann P, Ruppel M, Epstein E, Hilgenberg W (1993) Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol 125:763–769CrossRefGoogle Scholar
  45. Ludwig-Müller J, Epstein E, Hilgenberg W (1996) Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during infection with clubroot disease. Physiol Plant 97:627–634CrossRefGoogle Scholar
  46. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet L, Formey D, Niebel A, Andres Martinez E, Driguez H, Bécard G, Denarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63PubMedCrossRefGoogle Scholar
  47. Martin F (2007) Fair trade in the underworld: the ectomycorrhizal symbiosis. In: Howard RJ, Gow NAR (eds) Biology of the fungal cell, vol VIII, 2nd edn, The mycota. Springer, Berlin/Heidelberg, pp 291–308CrossRefGoogle Scholar
  48. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154CrossRefGoogle Scholar
  49. Martin F, Aerts A, Ahrn D, Brun A, Danchin EGJ, Duchaussoy F et al (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  50. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038PubMedCrossRefGoogle Scholar
  51. Massicote H-B, Perterson R-L, Ashford A-E (1987) Ontogeny of Eucalyptus piluliris-Pisolithus tinctorius ectomycorrhizae. I. Light microscopy and scanning electron microscopy. Can J Bot 65:1927–1939CrossRefGoogle Scholar
  52. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  53. McCann HC, Guttman DS (2008) Evolution of the type III secretion system and its effectors in plant-microbe interactions. New Phytol 177:33–47PubMedCrossRefGoogle Scholar
  54. Niemi K, Häggman H, Sarjala T (2002) Effect of diamines on the interaction between ectomycorrhizal fungi and adventitious root formation on Scots pine in vitro. Tree Physiol 22:373–381PubMedCrossRefGoogle Scholar
  55. Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509PubMedCrossRefGoogle Scholar
  56. Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370PubMedCrossRefGoogle Scholar
  57. Pearce G, Yamaguchi Y, Barona G, Ryan CA (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proc Natl Acad Sci USA 107:14921–14925PubMedCrossRefGoogle Scholar
  58. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980PubMedCrossRefGoogle Scholar
  59. Plett JM, Martin F (2012) Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor. Plant Signal Behav 7:12–15PubMedCrossRefGoogle Scholar
  60. Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203PubMedCrossRefGoogle Scholar
  61. Reddy SM, Hitchin S, Melayah D, Pandey AK, Raffier C, Henderson J, Marmeisse R, Gay G (2006) The auxin-inducible GH3 homologue ppGH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. New Phytol 170:391–400PubMedCrossRefGoogle Scholar
  62. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  63. Requena N, Serrano E, Ocón A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33–40PubMedCrossRefGoogle Scholar
  64. Riedlinger J, Schrey S, Tarkka M, Hampp R, Kapur M, Fielder H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3350–3557CrossRefGoogle Scholar
  65. Schornack S, Ballvora A, Gürlebeck D, Peart J, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46–60PubMedCrossRefGoogle Scholar
  66. Schrey S, Schellhammer M, Ecke M, Hampp R (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefGoogle Scholar
  67. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegel F, Eberl L, Hartmann A, Langerbartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:908–918CrossRefGoogle Scholar
  68. Smith S-E, Read D-J (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  69. Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029PubMedCrossRefGoogle Scholar
  70. Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65:271–278PubMedCrossRefGoogle Scholar
  71. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Mycorrhizosphere effect on the genotypic and metabolic diversity of the soil bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027PubMedCrossRefGoogle Scholar
  72. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016PubMedCrossRefGoogle Scholar
  73. Van West P, De Bruijn I, Minor KL, Phillips AH, Robertson EJ, Wawra S, Bain J, Anderson VL, Secombes CJ (2010) The putative RxLR effector protein in SpHtp1 from the fish pathogenic oomycete Saprolegnia parasitica is translocated into fish cells. FEMS Microbiol Lett 310:127–137PubMedCrossRefGoogle Scholar
  74. Veneault-Fourrey C, Martin F (2011) Mutualistic interactions on a knife-edge between saprotrophy and pathogenesis. Curr Opin Plant Biol 14:444–450PubMedCrossRefGoogle Scholar
  75. Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S (2011) Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 75:457–467PubMedCrossRefGoogle Scholar
  76. Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256PubMedCrossRefGoogle Scholar
  77. von Rad U, Klein I, Dobrev P, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–83CrossRefGoogle Scholar
  78. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790PubMedCrossRefGoogle Scholar
  79. Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900PubMedCrossRefGoogle Scholar
  80. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  81. Wen F, Curlango-Rivera G, Hawes M-C (2007) Proteins among the polysaccharides: a new perspective on root cap slime. Plant Signal Behav 2:410–412PubMedCrossRefGoogle Scholar
  82. Wen F, White G-J, Van Etten H-D, Xiong Z, Hawes M-C (2009) Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol 151:820–829PubMedCrossRefGoogle Scholar
  83. Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I (2006) Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–618PubMedCrossRefGoogle Scholar
  84. Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522PubMedCrossRefGoogle Scholar
  85. Yamaguchi Y, Barona G, Ryan CA, Pearce G (2011) GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. Plant Physiol 156:932–942PubMedCrossRefGoogle Scholar
  86. Yang B, Zhu W, Johnson LB, White FF (2000) The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent, nuclear-localized, double-stranded DNA binding protein. Proc Natl Acad Sci USA 97:9807–9812PubMedCrossRefGoogle Scholar
  87. Zhu W, Yang B, Chittoor JM, Johnson LB, White FF (1998) AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact 11:824–832PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Ecogenomics of Interactions LabUMR 1136 INRA Nancy University, Interactions Arbres/Micro-Organismes, INRA-NancyChampenouxFrance

Personalised recommendations