Lake Kivu pp 181-190 | Cite as

Lake Kivu Research: Conclusions and Perspectives

  • Jean-Pierre Descy
  • François Darchambeau
  • Martin Schmid
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 5)

Abstract

In this chapter the knowledge gained from the interdisciplinary research on Lake Kivu presented in the previous chapters is synthesized. The importance of the sublacustrine springs as a driving force for physical and biogeochemical processes is highlighted, the special properties of the lake’s food web structure are discussed, and the consequences and impacts of both the introduction of a new fish species and methane extraction are evaluated. Finally, a list of open research questions illustrates that Lake Kivu has by far not yet revealed all of its secrets.

Keywords

Zooplankton Biomass Fish Yield Euphotic Depth Methane Exploitation Methane Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Coulter GW (1981) Biomass, production, and potential yield of the Lake Tanganyika pelagic fish community. Trans Am Fish Soc 110:325–335. doi: 10.1577/1548-8659(1981)110<325:BPAPYO>2.0.CO;2 CrossRefGoogle Scholar
  2. de Iongh HH, Spliethoff PC, Frank VG (1983) Feeding habits of the clupeid Limnothrissa miodon (Boulenger), in Lake Kivu. Hydrobiologia 102:113–122. doi: 10.1007/BF00006074 CrossRefGoogle Scholar
  3. Descy J-P, Hardy M-A, Sténuite S, Pirlot S, Leporcq B, Kimirei I, Sekadende B, Mwaitega SR, Sinyenza D (2005) Phytoplankton pigments and community composition in Lake Tanganyika. Freshw Biol 50:668–684. doi: 10.1111/j.1365-2427.2005.01358.x CrossRefGoogle Scholar
  4. Dumont HJ (1986) The Tanganyika sardine in Lake Kivu: another ecodisaster for Africa? Environ Conserv 13:143–148. doi: 10.1017/S0376892900036742 CrossRefGoogle Scholar
  5. Irvine K, Waya R (1999) Spatial and temporal patterns of zooplankton standing biomass and production in Lake Malawi. Hydrobiologia 407:191–205. doi: 10.1023/A:1003711306243 CrossRefGoogle Scholar
  6. Isumbisho (2006) Zooplankton ecology of Lake Kivu (East Africa). PhD thesis, University of Namur.Google Scholar
  7. Kimirei IA, Mgaya YD (2007) Influence of environmental factors on seasonal changes in clupeid catches in the Kigoma area of Lake Tanganyika. Afric J Aquat Sci 32:291–298. doi: 10.2989/AJAS.2007.32.3.9.308 CrossRefGoogle Scholar
  8. Lorke A, Tietze K, Halbwachs M, Wüest A (2004) Response of Lake Kivu stratification to lava inflow and climate warming. Limnol Oceanogr 49:778–783. doi: 10.4319/lo.2004.49.3.0778 CrossRefGoogle Scholar
  9. Masilya P (2011) Ecologie alimentaire comparée de Limnothrissa miodon et de Lamprichthys tanganicanus au lac Kivu (Afrique de l’Est). PhD thesis, University of Namur.Google Scholar
  10. Masilya MP, Darchambeau F, Isumbisho M, Descy J-P (2011) Diet overlap between the newly introduced Lamprichthys tanganicanus and the Tanganyika sardine in Lake Kivu, Eastern Africa. Hydrobiologia 675:75–86. doi: 10.1007/s10750-011-0797-y Google Scholar
  11. Matthes H (1968) Preliminary investigations into the biology of the Lake Tanganyika clupeidae. Fish Res Bull Zambia 4:39–46Google Scholar
  12. Mölsä H, Sarvala J, Badende S, Chitamwebwa D, Kanyaru R, Mulimbwa N, Mwape L (2002) Ecosystem monitoring in the development of sustainable fisheries in Lake Tanganyika. Aquat Ecosys Health Manag 5:267–281CrossRefGoogle Scholar
  13. Pasche N, Alunga G, Mills K, Muvundja F, Ryves DB, Schurter M, Wehrli B, Schmid M (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol 44:931–946. doi: 10.1007/s10933-010-9465-x CrossRefGoogle Scholar
  14. Pasche N, Schmid M, Vazquez F, Schubert CJ, Wüest A, Kessler J, Pack MA, Reeburgh WS, Bürgmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res Biogeosci 116:G03006. doi: 10.1029/2011JG001690 CrossRefGoogle Scholar
  15. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257. doi: 10.1038/374255a0 CrossRefGoogle Scholar
  16. Stenuite S, Pirlot S, Hardy M-A, Sarmento H, Tarbe A-L, Leporcq B, Descy J-P (2007) Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent decades. Freshw Biol 52:2226–2239. doi: 10.1111/j.1365-2427.2007.01829.x CrossRefGoogle Scholar
  17. Szczucka J (1998) Acoustical estimation of fish abundance and their spatial distributions in Lake Tanganyika. FAO/FINNIDA research for the management of the fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/84, 64ppGoogle Scholar
  18. Tarbe A-L, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Descy J-P (2011) Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microb Ecol 62:314–323. doi: 10.1007/s00248-011-9817-8 Google Scholar
  19. Verbeke J (1957) Recherche écologique sur la faune des grands lacs de l’Est du Congo belge. Exploration hydrobiologique des lacs Kivu, Edouard et Albert (1952–54). Bull Inst R Sci Nat Belg 3:1–177Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jean-Pierre Descy
    • 1
  • François Darchambeau
    • 2
  • Martin Schmid
    • 3
  1. 1.Research Unit in Environmental and Evolutionary BiologyUniversity of NamurNamurBelgium
  2. 2.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  3. 3.Eawag: Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland

Personalised recommendations