Evolution of the Cadherin–Catenin Complex

  • Oda HirokiEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 60)


Adherens junctions are the most common junction type found in animal epithelia. Their core components are classical cadherins and catenins, which form membrane-spanning complexes that mediate intercellular binding on the extracellular side and associate with the actin cytoskeleton on the intracellular side. Junctional cadherin–catenin complexes are key elements involved in driving animal morphogenesis. Despite their ubiquity and importance, comparative studies of classical cadherins, catenins and their related molecules suggest that the cadherin/catenin-based adherens junctions have undergone structural and compositional transitions during the diversification of animal lineages. This chapter describes the molecular diversities related to the cadherin–catenin complex, based on accumulated molecular and genomic information. Understanding when and how the junctional cadherin–catenin complex originated, and its subsequent diversification in animals, promotes a comprehensive understanding of the mechanisms of animal morphological diversification.


Cytoplasmic Domain Adherens Junction Extracellular Region Planar Cell Polarity Animal Lineage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Shicui Zhang for having supported my access to amphioxus embryos; Tomohiro Haruta for his permission to use unpublished electron micrographs; and Yasuko Akiyama-Oda for her comments on the manuscript.


  1. Abedin M, King N (2008) The premetazoan ancestry of cadherins. Science 319:946–948. doi:10.1126/science1151084PubMedGoogle Scholar
  2. Aberle H, Schwartz H, Hoschuetzky H, Kemler R (1996) Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to α-catenin. J Biol Chem 271:1520–1526. doi:10.1074/jbc.271.3.1520PubMedGoogle Scholar
  3. Biswas S, Emond MR, Jontes JD (2010) Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. J Cell Biol 191:1029–1041. doi:10.1083/jcb.201007008PubMedGoogle Scholar
  4. Boller K, Vestweber D, Kemler R (1985) Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J Cell Biol 100:327–332PubMedGoogle Scholar
  5. Brackenbury R, Rutishauser U, Edelman GM (1981) Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A 78:387–391PubMedGoogle Scholar
  6. Brembeck FH, Rosário M, Birchmeier W (2006) Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr Opin Genet Dev 16:51–59. doi:10.1016/j.gde.2005.12.007PubMedGoogle Scholar
  7. Broadbent ID, Pettitt J (2002) The C. elegans hmr-1 gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation. Curr Biol 12:59–63. doi:10.1016/S0960-9822(01)00624-8PubMedGoogle Scholar
  8. Carreira-Barbosa F, Kajita M, Morel V, Wada H, Okamoto H, Martinez Arias A, Fujita Y, Wilson SW, Tada M (2008) Flamingo regulates epiboly and convergence/extension movements through cell cohesive and signalling functions during zebrafish gastrulation. Development 136:383–392. doi:10.1242/dev.026542PubMedGoogle Scholar
  9. Castillejo-López C, Arias WM, Baumgartner S (2004) The fat-like gene of Drosophila is the true orthologue of vertebrate Fat cadherins and is involved in the formation of tubular organs. J Biol Chem 279:24034–24043. doi:10.1074/jbc.M313878200PubMedGoogle Scholar
  10. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Böttger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464:592–596. doi:10.1038/nature08830PubMedGoogle Scholar
  11. Chen X, Gumbiner BM (2006) Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol 174:301–313. doi:10.1083/jcb.200602062PubMedGoogle Scholar
  12. Choi H J, Gross JC, Pokutta S, Weis WI (2009) Interactions of plakoglobin and β-catenin with desmosomal cadherins: basis of selective exclusion of α- and β-catenin from desmosomes. J Biol Chem 284:31776–31788. doi:10.1074/jbc.M109.047928PubMedGoogle Scholar
  13. Clark HF, Brentrup D, Schneitz K, Bieber A, Goodman C, Noll M (1995) Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Genes Dev 9:1530–1542. doi:10.1101/gad.9.12.1530PubMedGoogle Scholar
  14. Coates JC (2003) Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 13:463–471. doi:10.1016/S0962-8924(03)00167-3PubMedGoogle Scholar
  15. Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR (1998) A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141:297–308. doi:10.1083/jcb.141.1.297PubMedGoogle Scholar
  16. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SD, Gray IC, Murdoch JN (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133. doi:10.1016/S0960-9822(03)00374-9PubMedGoogle Scholar
  17. D’Alterio C, Tran DD, Yeung MW, Hwang MS, Li MA, Arana CJ, Mulligan VK, Kubesh M, Sharma P, Chase M, Tepass U, Godt D (2005) Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. J Cell Biol 171:549–558. doi:10.1083/jcb.200507072PubMedGoogle Scholar
  18. Dan-Sohkawa MDS, Kaneko HK, Noda KN (1995) Paracellular, transepithelial permeation of macromolecules in the body wall epithelium of starfish embryos. J Exp Zool 271:264–272. doi:10.1002/jez.1402710404Google Scholar
  19. Daniel JM, Reynolds AB (1995) The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or α-catenin. Mol Cell Biol 15:4819–4824PubMedGoogle Scholar
  20. Davis MA, Reynolds AB (2006) Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev. Cell 10:21–31. doi:10.1016/j.devcel.2005.12.004Google Scholar
  21. Davis MA, Ireton RC, Reynolds AB (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163:525–534. doi:10.1083/jcb.200307111PubMedGoogle Scholar
  22. Dickinson DJ, Nelson WJ, Weis WI (2011) A polarized epithelium organized by b- and α-catenin predates cadherin and metazoan origins. Science 331:1336–1339. doi:10.1126/science.1199633PubMedGoogle Scholar
  23. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123:903–915. doi:10.1016/j.cell.2005.09.021PubMedGoogle Scholar
  24. Eisenmann DM (2005) Wnt signaling. WormBook 25:1–17Google Scholar
  25. Elledge HM, Kazmierczak P, Clark P, Joseph JS, Kolatkar A, Kuhn P, Müller U (2010) Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 107:10708–10712. doi:10.1073/pnas.1006284107PubMedGoogle Scholar
  26. Ereskovsky AV, Borchiellini C, Gazave E, Ivanisevic J, Lapébie P, Perez T, Renard E, Vacelet J (2009) The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology: model sponge Oscarella lobularis. Bioessays 31:89–97. doi:10.1002/bies.080058PubMedGoogle Scholar
  27. Fahey B, Degnan BM (2010) Origin of animal epithelia: insights from the sponge genome. Evol Dev 12:601–617. doi:10.1111/j.1525-142X.2010.00445.xGoogle Scholar
  28. Fang X, Ji H, Kim SW, Park JI, Vaught TG, Anastasiadis PZ, Ciesiolka M, McCrea PD (2004) Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac. J Cell Biol 165:87–98. doi:10.1083/jcb.200307109PubMedGoogle Scholar
  29. Formstone CJ, Mason I (2005) Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev Biol 282:320–335. doi:10.1016/j.ydbio.2005.03.026PubMedGoogle Scholar
  30. Fung S, Wang F, Chase M, Godt D, Hartenstein V (2008) Expression profile of the cadherin family in the developing Drosophila brain. J Comp Neurol 506:469–488. doi:10.1002/cne.21539PubMedGoogle Scholar
  31. Gallin WJ, Sorkin BC, Edelman GM, Cunningham BA (1987) Sequence analysis of a cDNA clone encoding the liver cell adhesion molecule, L-CAM. Proc Natl Acad Sci U S A 84:2808–2812PubMedGoogle Scholar
  32. Grana TM, Cox EA, Lynch AM, Hardin J (2010) SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during C. elegans gastrulation. Dev Biol 344:731–744. doi:10.1016/j.ydbio.2010.05.507PubMedGoogle Scholar
  33. Greenwood MD, Marsden MD, Cowley CM, Sahota VK, Buxton RS (1997) Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to “classical” cadherins than to desmogleins. Genomics 44:330–335. doi:10.1006/geno.1997.4894PubMedGoogle Scholar
  34. Grimson MJ, Coates JC, Reynolds JP, Shipman M, Blanton RL, Harwood AJ (2000) Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism. Nature 408:727–731 doi:10.1038/35047099PubMedGoogle Scholar
  35. Haruta T, Warrior R, Yonemura S, Oda H. (2010) The proximal half of the Drosophila E-cadherin extracellular region is dispensable for many cadherin-dependent events but required for ventral furrow formation. Genes Cells 15:193–208. doi:10.1111/j.1365-2443.2010.01389.xGoogle Scholar
  36. Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320:447–449. doi:10.1038/320447a0PubMedGoogle Scholar
  37. Hatzfeld M, Nachtsheim C (1996) Cloning and characterization of a new armadillo family member, p0071, associated with the junctional plaque: evidence for a subfamily of closely related proteins. J Cell Sci 109:2767–2778PubMedGoogle Scholar
  38. Heimark RL, Degner M, Schwartz SM (1990) Identification of a Ca2+-dependent cell-cell adhesion molecule in endothelial cells. J Cell Biol 110:1745–1756PubMedGoogle Scholar
  39. Herrenknecht K, Ozawa M, Eckerskorn C, Lottspeich F, Lenter M, Kemler R (1991) The uvomorulin-anchorage protein α catenin is a vinculin homologue. Proc Natl Acad Sci U S A 88:9156–9160PubMedGoogle Scholar
  40. Hirano S, Kimoto N, Shimoyama Y, Hirohashi S, Takeichi M (1992) Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70:293–301. doi:10.1016/0092-8674(92)90103-JPubMedGoogle Scholar
  41. Hsu SN, Yonekura S, Ting CY, Robertson HM, Iwai Y, Uemura T, Lee CH, Chiba A (2009) Conserved alternative splicing and expression patterns of arthropod N-cadherin. PLoS Genet 5(4):e1000441. doi:10.1371/journal.pgen.1000441PubMedGoogle Scholar
  42. Huber AH, Weis WI (2001) The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105:391–402. doi:10.1016/S0092-8674(01)00330-0PubMedGoogle Scholar
  43. Huber O, Krohn M, Kemler R (1997) A specific domain in α-catenin mediates binding to β-catenin or plakoglobin. J Cell Sci 110:1759–1765PubMedGoogle Scholar
  44. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41:349–369. doi:10.1016/j.biocel.2008.09.027PubMedGoogle Scholar
  45. Hulpiau P, van Roy F (2010) New Insights into the Evolution of Metazoan Cadherins. Mol Biol Evol 28:647–657. doi:10.1093/molbev/msq233PubMedGoogle Scholar
  46. Hyafil F, Babinet C, Jacob F (1981) Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell 26:447–454. doi:10.1016/0092-8674(81)90214-2PubMedGoogle Scholar
  47. Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA, Anastasiadis PZ, Matrisian L, Bundy LM, Sealy L, Gilbert B, van Roy F, Reynolds AB (2002) A novel role for p120 catenin in E-cadherin function. J Cell Biol 159:465–476. doi:10.1083/jcb.200205115PubMedGoogle Scholar
  48. Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T (2009) Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol 185:959–967. doi:10.1083/jcb.200811030PubMedGoogle Scholar
  49. Iwai Y, Usui T, Hirano S, Steward R, Takeichi M, Uemura T (1997) Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19:77–89. doi:10.1016/S0896-6273(00)80349-9PubMedGoogle Scholar
  50. Kanno M, Isa Y, Aoyama Y, Yamamoto Y, Nagai M, Ozawa M, Kitajima Y (2008) p120-catenin is a novel desmoglein 3 interacting partner: identification of the p120-catenin association site of desmoglein 3. Exp Cell Res 314:1683–1692. doi:10.1016/j.yexcr.2008.01.031PubMedGoogle Scholar
  51. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:87–91. doi:10.1038/nature06091PubMedGoogle Scholar
  52. Kemler R, Babinet C, Eisen H, Jacob F (1977) Surface antigen in early differentiation. Proc Natl Acad Sci U S A 74:4449–4452PubMedGoogle Scholar
  53. Knust E, Bossinger O (2002) Composition and formation of intercellular junctions in epithelial cells. Science 298:1955–1959. doi:10.1126/science.1072161PubMedGoogle Scholar
  54. Kobielak A, Fuchs E (2004) Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5:614–625. doi:10.1038/nrm1433PubMedGoogle Scholar
  55. Koslov ER, Maupin P, Pradhan D, Morrow JS, Rimm DL (1997) α-catenin can form asymmetric homodimeric complexes and/or heterodimeric complexes with β-catenin. J Biol Chem 272:27301–27306. doi:10.1074/jbc.272.43.27301PubMedGoogle Scholar
  56. Kremmidiotis G, Baker E, Crawford J, Eyre HJ, Nahmias J, Callen DF (1998) Localization of human cadherin genes to chromosome regions exhibiting cancer-related loss of heterozygosity. Genomics 49:467–471. doi:10.1006/geno.1998.5281PubMedGoogle Scholar
  57. Kwiatkowski AV, Maiden SL, Pokutta S, Choi HJ, Benjamin JM, Lynch AM, Nelson WJ, Weis WI, Hardin J (2010) In vitro and in vivo reconstitution of the cadherin-catenin-actin complex from Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:14591–14596. doi:10.1073/pnas.1007349107PubMedGoogle Scholar
  58. Lampugnani MG, Corada M, Andriopoulou P, Esser S, Risau W, Dejana E (1997) Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci 110:2065–2077PubMedGoogle Scholar
  59. Lane NJ, Dallai R, Martinucci GB, Burighel P (1987) Cell junctions in amphioxus (Cephalochordata): a thin section and freeze-fracture study. Tissue Cell 19:399–411. doi:10.1016/0040-8166(87)90035-8PubMedGoogle Scholar
  60. Ma D, Yang CH, McNeill H, Simon MA, Axelrod JD (2003) Fidelity in planar cell polarity signalling. Nature 421:543–547. doi:10.1038/nature01366PubMedGoogle Scholar
  61. Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS (1991) The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67:853–868. doi:10.1016/0092-8674(91)90359-7PubMedGoogle Scholar
  62. Mariner DJ, Wang J, Reynolds AB (2000) ARVCF localizes to the nucleus and adherens junction and is mutually exclusive with p120ctn in E-cadherin complexes. J Cell Sci 113:1481–1490PubMedGoogle Scholar
  63. Matakatsu H, Blair SS (2004) Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131:3785–3794. doi:10.1242/dev.01254PubMedGoogle Scholar
  64. McCrea PD, Turck CW, Gumbiner B (1991) A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254:1359–1361. doi:10.1126/science.1962194PubMedGoogle Scholar
  65. Morishita H, Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19:584–592. doi:10.1016/ Scholar
  66. Myster SH, Cavallo R, Anderson CT, Fox DT, Peifer M (2003) Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J Cell Biol 160:433–449. doi:10.1083/jcb.200211083PubMedGoogle Scholar
  67. Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M (1987) Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329:341–343PubMedGoogle Scholar
  68. Nagafuchi A, Takeichi M, Tsukita S (1991) The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65:849–857. doi:10.1016/0092-8674(91)90392-CPubMedGoogle Scholar
  69. Nagar B, Overduin M, Ikura M, Rini JM (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380:360–364. doi:10.1038/380360a0PubMedGoogle Scholar
  70. Nakao S, Platek A, Hirano S, Takeichi M (2008) Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. J Cell Biol 182:395–410. doi:10.1083/jcb.200802069PubMedGoogle Scholar
  71. Navarro P, Ruco L, Dejana E (1998) Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140:1475–1484. doi:10.1083/jcb.140.6.1475PubMedGoogle Scholar
  72. Nieset JE, Redfield AR, Jin F, Knudsen KA, Johnson KR, Wheelock MJ (1997) Characterization of the interactions of α-catenin with a-actinin and β-catenin/plakoglobin. J Cell Sci 110:1013–1022PubMedGoogle Scholar
  73. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572. doi:10.1006/jmbi.2000.3777PubMedGoogle Scholar
  74. Nose A, Nagafuchi A, Takeichi M (1988) Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54:993–1001. doi:10.1016/0092-8674(88)90114-6PubMedGoogle Scholar
  75. Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155. doi:10.1016/0092-8674(90)90222-ZPubMedGoogle Scholar
  76. Obama H, Ozawa M (1997) Identification of the domain of α-catenin involved in its association with β-catenin and plakoglobin (γ-catenin). J Biol Chem 272:11017–11020PubMedGoogle Scholar
  77. Oda H, Takeichi M (2011) Evolution: Structural and functional diversity of cadherin at the adherens junction. J Cell Biol 193:1137–1146. doi:10.1083/jcb.201008173PubMedGoogle Scholar
  78. Oda H, Tsukita S (1999) Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev Biol 216:406–422. doi:10.1006/dbio.1999.9494PubMedGoogle Scholar
  79. Oda H, Uemura T, Harada Y, Iwai Y, Takeichi M (1994) A Drosophila homolog of cadherin associated with Armadillo and essential for embryonic cell-cell adhesion. Dev. Biol 165:716–726. doi:10.1006/dbio.1994.1287PubMedGoogle Scholar
  80. Oda H, Wada H, Tagawa K, Akiyama-Oda Y, Satoh N, Humphreys T, Zhang S, Tsukita S (2002) A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny. Evol Dev 4:426–434. doi:10.1046/j.1525-142X.2002.02031.xPubMedGoogle Scholar
  81. Oda H, Akiyama-Oda Y, Zhang S (2004) Two classic cadherin-related molecules with no cadherin extracellular repeats in the cephalochordate amphioxus: distinct adhesive specificities and possible involvement in the development of multicell-layered structures. J Cell Sci 117:2757–2767. doi:10.1242/jcs.01045PubMedGoogle Scholar
  82. Oda H, Tagawa K, Akiyama-Oda Y (2005) Diversification of epithelial adherens junctions with independent reductive changes in cadherin form: identification of potential molecular synapomorphies among bilaterians. Evol Dev 7:376–389. doi:10.1111/j.1525-142X.2005.05043.xPubMedGoogle Scholar
  83. Overduin M, Harvey TS, Bagby S, Tong KI, Yau P, Takeichi M, Ikura M (1995) Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267:386–389. doi:10.1126/science.7824937PubMedGoogle Scholar
  84. Ozawa M, Kemler R (1990) Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J Cell Biol 111:1645–1650PubMedGoogle Scholar
  85. Ozawa M, Engel J, Kemler R (1990) Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63:1033–1038. doi:10.1016/0092-8674(90)90506-APubMedGoogle Scholar
  86. Pacquelet A, Lin L, Rorth P (2003) Binding site for p120/δ-catenin is not required for Drosophila E-cadherin function in vivo. J Cell Biol 160:313–319. doi:10.1083/jcb.200207160PubMedGoogle Scholar
  87. Patel SD, Ciatto C, Chen CP, Bahna F, Rajebhosale M, Arkus N, Schieren I, Jessell TM, Honig B, Price SR, Shapiro L (2006) Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124:1255–1268. doi:10.1016/j.cell.2005.12.046PubMedGoogle Scholar
  88. Paulson AF, Mooney E, Fang X, Ji H, McCrea PD (2000) Xarvcf, Xenopus member of the p120 catenin subfamily associating with cadherin juxtamembrane region. J Biol Chem 275:30124–30131. doi:10.1074/jbc.M003048200PubMedGoogle Scholar
  89. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287:1606–1609. doi:10.1126/science.287.5458.1606PubMedGoogle Scholar
  90. Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM (1992) The vertebrate adhesive junction β-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol 118:681–691PubMedGoogle Scholar
  91. Pettitt J (2005) The cadherin superfamily. WormBook 29:1–9Google Scholar
  92. Pettitt J, Cox EA, Broadbent ID, Flett A, Hardin J (2003) The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol 162:15–22. doi:10.1083/jcb.200212136PubMedGoogle Scholar
  93. Pokutta S, Weis WI (2000) Structure of the dimerization and β-catenin-binding region of α-catenin. Mol Cell 5:533–543. doi:10.1016/S1097-2765(00)80447-5PubMedGoogle Scholar
  94. Prakash S, Caldwell JC, Eberl DF, Clandinin TR (2005) Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci 8:443–450. doi:10.1038/nn1415PubMedGoogle Scholar
  95. Reddy B V, Irvine KD (2008) The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 135:2827–2838. doi:10.1242/dev.020974PubMedGoogle Scholar
  96. Reynolds AB, Roesel DJ, Kanner SB, Parsons JT (1989) Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol Cell Biol 9:629–638PubMedGoogle Scholar
  97. Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z (1994) Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14:8333–8342PubMedGoogle Scholar
  98. Riggleman B, Wieschaus E, Schedl P (1989) Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 3:96–113. doi:10.1101/gad.3.1.96PubMedGoogle Scholar
  99. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) α 1(E)-catenin is an actin-binding and—bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci U S A 92:8813–8817PubMedGoogle Scholar
  100. Ringwald M, Schuh R, Vestweber D, Eistetter H, Lottspeich F, Engel J, Dölz R, Jähnig F, Epplen J, Mayer S (1987) The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion. EMBO J 6:3647–3653PubMedGoogle Scholar
  101. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40:1010–1015. doi:10.1016/ Scholar
  102. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF, Tidor B, Degnan BM, Oakley TH, Kosik KS (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2(6):e506. doi:10.1371/journal.pone.0000506PubMedGoogle Scholar
  103. Salomon D, Ayalon O, Patel-King R, Hynes RO, Geiger B (1992) Extrajunctional distribution of N-cadherin in cultured human endothelial cells. J Cell Sci 102:7–17PubMedGoogle Scholar
  104. Sasakura Y, Shoguchi E, Takatori N, Wada S, Meinertzhagen IA, Satou Y, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. X. Genes for cell junctions and extracellular matrix. Dev Genes Evol 213:303–313. doi:1007/s00427-003-0320-1PubMedGoogle Scholar
  105. Shirayoshi Y, Hatta K, Hosoda M, Tsunasawa S, Sakiyama F, Takeichi M (1986) Cadherin cell adhesion molecules with distinct binding specificities share a common structure. EMBO J 5:2485–2488PubMedGoogle Scholar
  106. Takeichi M (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639–655PubMedGoogle Scholar
  107. Takeichi M (2007) The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8:11–20. doi:10.1038/nrn2043PubMedGoogle Scholar
  108. Tanabe K, Takeichi M, Nakagawa S (2004) Identification of a nonchordate-type classic cadherin in vertebrates: chicken Hz-cadherin is expressed in horizontal cells of the neural retina and contains a nonchordate-specific domain complex. Dev Dyn 229:899–906. doi:10.1002/dvdy.10493PubMedGoogle Scholar
  109. Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Török T, Hartenstein V (1996) shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 10:672–685. doi:10.1101/gad.10.6.672PubMedGoogle Scholar
  110. Tolwinski NS, Wieschaus E (2004) Rethinking WNT signaling. Trends Genet 20:177–181. doi:10.1016/j.tig.2004.02.003PubMedGoogle Scholar
  111. Troyanovsky SM, Troyanovsky RB, Eshkind LG, Krutovskikh VA, Leube RE, Franke WW (1994) Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage. J Cell Biol 127:151–160PubMedGoogle Scholar
  112. Uemura T, Oda H, Kraut R, Hayashi S, Kotaoka Y, Takeichi M (1996) Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev 10:659–671. doi:10.1101/gad.10.6.659PubMedGoogle Scholar
  113. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–595. doi:10.1016/S0092-8674(00)80046-XPubMedGoogle Scholar
  114. Vestal DJ, Ranscht B (1992) Glycosyl phosphatidylinositol—anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J Cell Biol 119:451–461PubMedGoogle Scholar
  115. Volk T, Geiger B (1984) A 135-kd membrane protein of intercellular adherens junctions. EMBO J 3:2249–2260PubMedGoogle Scholar
  116. Watson GM, Pham L, Graugnard EM, Mire P (2008) Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J Comp. Physiol. A Neuroethol. Sens. Neural Behav Physiol 194:811–820. doi:10.1007/s00359-008-0352-0Google Scholar
  117. Wendeler MW, Jung R, Himmelbauer H, Gessner R (2006) Unique gene structure and paralogy define the 7D-cadherin family. Cell Mol Life Sci 63:1564–1573. doi:10.1007/s00018-006-6014-xPubMedGoogle Scholar
  118. Whittaker CA, Bergeron KF, Whittle J, Brandhorst BP, Burke RD, Hynes RO (2006) The echinoderm adhesome. Dev Biol 300:252–266. doi:10.1016/j.ydbio.2006.07.044PubMedGoogle Scholar
  119. Xiao K, Allison DF, Buckley KM, Kottke MD, Vincent PA, Faundez V, Kowalczyk AP (2003) Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol 163:535–545. doi:10.1083/jcb.200306001PubMedGoogle Scholar
  120. Yap AS, Niessen CM, Gumbiner BM (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 141:779–789. doi:10.1083/jcb.141.3.779PubMedGoogle Scholar
  121. Yonekura S, Xu L, Ting CY, Lee CH (2007) Adhesive but not signaling activity of Drosophila N-cadherin is essential for target selection of photoreceptor afferents. Dev Biol 304:759–770. doi:10.1016/j.ydbio.2007.01.030PubMedGoogle Scholar
  122. Yoshida C, Takeichi M (1982) Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 28:217–224. doi:10.1016/0092-8674(82)90339-7PubMedGoogle Scholar
  123. Yoshida-Noro C, Suzuki N, Takeichi M (1984) Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev Biol 101:19–27. doi:10.1016/0012-1606(84)90112-XPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.JT Biohistory Research HallTakatsukiJapan

Personalised recommendations