Adherens Junctions and Pathogen Entry

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 60)

Abstract

Epithelia are highly organised structures protecting underlying tissues against microbial pathogens. Epithelial morphogenesis and maintenance is mediated by cell-cell adhesion molecules organised in junctional complexes, such as the adherens junctions. The tight organisation of these complexes and their interactions with cellular factors render the epithelia impermeable to potential invaders. Nevertheless, pathogens have developed strategies to target, interact and manipulate junctional complexes, in order to disrupt or cross the epithelial barriers and cause infection. Bacteria, viruses and parasites access the junctional molecular components either directly, often taking advantage of physiological alterations in epithelial polarity, or indirectly, by delivering into cells molecular factors that destabilise junctional integrity. Importantly, microbial interactions with junctional components are instrumental not only to elucidate mechanisms of invasion, but also to unravel fundamental physiological properties of the epithelial barriers, at the cellular and tissular level.

Notes

Acknowledgements

Georgios Nikitas was a recipient of the Marie Curie Actions Early Stage Researcher INTRAPATH programme which he received while preparing his PhD thesis in the Laboratory of Microbes and Host Barriers, under the direction of Marc Lecuit in the Pasteur Institute.

References

  1. Anderton JM, Rajam G, Romero-Steiner S, Summer S, Kowalczyk AP, Carlone GM, Sampson JS, Ades EW (2007) E-cadherin is a receptor for the common protein pneumococcal surface adhesin A (PsaA) of streptococcus pneumoniae. Microb Pathog 42:225–236PubMedCrossRefGoogle Scholar
  2. Attali C, Durmort C, Vernet T, Di Guilmi AM (2008) The interaction of Streptococcus prneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage Infect Immun 76:5350–5356Google Scholar
  3. Bonazzi M, Cossart P (2011) Host-pathogen interactions: impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. J Cell Biol 195:349–358PubMedCrossRefGoogle Scholar
  4. Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A, Prevost MC, Roberts A, Taner SB, Wilbur JD, Brodsky FM et al (2011) Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J Cell Biol 195:525–536PubMedCrossRefGoogle Scholar
  5. Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S, Dumenil G, Mege RM, Weksler BB, Romero IA et al (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325:83–87PubMedCrossRefGoogle Scholar
  6. da Costa RF, de Souza W, Benchimol M, Alderete JF, Morgado-Diaz JA (2005) Trichomonas vaginalis perturbs the junctional complex in epithelial cells. Cell Res 15:704–716PubMedCrossRefGoogle Scholar
  7. de Melo TG, Meirelles Mde N, Pereira MC (2008) Trypanosoma cruzi alters adherens junctions in cardiomyocytes. Microbes Infect 10:1405–1410PubMedCrossRefGoogle Scholar
  8. Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, Ragon M, Le Monnier A, Babinet C, Cossart P et al (2008) Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118PubMedCrossRefGoogle Scholar
  9. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915PubMedCrossRefGoogle Scholar
  10. Galen B, Cheshenko N, Tuyama A, Ramratnam B, Herold BC (2006) Access to nectin favors herpes simplex virus infection at the apical surface of polarized human epithelial cells. J Virol 80:12209–12218PubMedCrossRefGoogle Scholar
  11. Gavala ML, Bertics PJ, Gern JE (2011) Rhinoviruses, allergic inflammation, and asthma. Immunol Rev 242:69–90PubMedCrossRefGoogle Scholar
  12. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280:1618–1620PubMedCrossRefGoogle Scholar
  13. Gonzalez-Mariscal L, Garay E, Lechuga S (2009) Virus interaction with the apical junctional complex. Front Biosci 14:731–768PubMedCrossRefGoogle Scholar
  14. Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702PubMedCrossRefGoogle Scholar
  15. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41:349–369PubMedCrossRefGoogle Scholar
  16. Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, Sata T, Yoneyama M, Fujita T, Taya C, Yonekawa H et al (2005) The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79:4460–4469PubMedCrossRefGoogle Scholar
  17. Lecuit M, Sonnenburg JL, Cossart P, Gordon JI (2007) Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. J Biol Chem 282:15065–15072PubMedCrossRefGoogle Scholar
  18. Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725PubMedCrossRefGoogle Scholar
  19. Lemichez E, Lecuit M, Nassif X, Bourdoulous S (2010) Breaking the wall: targeting of the endothelium by pathogenic bacteria. Nat Rev Microbiol 8:93–104PubMedGoogle Scholar
  20. Moreno-Ruiz E, Galan-Diez M, Zhu W, Fernandez-Ruiz E, d’Enfert C, Filler SG, Cossart P, Veiga E (2009) Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell Microbiol 11:1179–1189PubMedCrossRefGoogle Scholar
  21. Niessen CM, Gottardi CJ (2008) Molecular components of the adherens junction. Biochim Biophys Acta 1778:562–571PubMedCrossRefGoogle Scholar
  22. Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M (2011) Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 208:2263–2277PubMedCrossRefGoogle Scholar
  23. O’Connor PM, Lapointe TK, Jackson S, Beck PL, Jones NL, Buret AG (2011) Helicobacter pylori activates calpain via toll-like receptor 2 to disrupt adherens junctions in human gastric epithelial cells. Infect Immun 79:3887–3894PubMedCrossRefGoogle Scholar
  24. Oh JD, Karam SM, Gordon JI (2005) Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc Natl Acad Sci U S A 102:5186–5191PubMedCrossRefGoogle Scholar
  25. Oliveira MJ, Costa AM, Costa AC, Ferreira RM, Sampaio P, Machado JC, Seruca R, Mareel M, Figueiredo C (2009) CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis 200:745–755PubMedCrossRefGoogle Scholar
  26. Pentecost M, Kumaran J, Ghosh P, Amieva MR (2010) Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. PLoS Pathog 6(5): e1000900. doi:10.1371/journal.ppat.1000900Google Scholar
  27. Pentecost M, Otto G, Theriot JA, Amieva MR (2006) Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion. PLoS Pathog 2(1): e3. doi:10.1371/journal.ppat.0020003Google Scholar
  28. Sansonetti PJ, Mounier J, Prevost MC, Mege RM (1994) Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell 76:829–839PubMedCrossRefGoogle Scholar
  29. Schelhaas M (2010) Come in and take your coat off – how host cells provide endocytosis for virus entry. Cell Microbiol 12:1378–1388PubMedCrossRefGoogle Scholar
  30. Shaikh N, Terajima J, Watanabe H (2003) IpaC of Shigella binds to the C-terminal domain of beta-catenin. Microb Pathog 35:107–117PubMedCrossRefGoogle Scholar
  31. Sousa S, Cabanes D, Archambaud C, Colland F, Lemichez E, Popoff M, Boisson-Dupuis S, Gouin E, Lecuit M, Legrain P et al (2005a) ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion. Nat Cell Biol 7:954–960CrossRefGoogle Scholar
  32. Sousa S, Lecuit M, Cossart P (2005b) Microbial strategies to target, cross or disrupt epithelia. Curr Opin Cell Biol 17:489–498CrossRefGoogle Scholar
  33. Stavru F, Archambaud C, Cossart P (2011) Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 240:160–184PubMedCrossRefGoogle Scholar
  34. Struyf F, Martinez WM, Spear PG (2002) Mutations in the N-terminal domains of nectin-1 and nectin-2 reveal differences in requirements for entry of various alphaherpesviruses and for nectin-nectin interactions. J Virol 76:12940–12950PubMedCrossRefGoogle Scholar
  35. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116:17–27PubMedCrossRefGoogle Scholar
  36. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K et al (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956PubMedCrossRefGoogle Scholar
  37. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–3788PubMedCrossRefGoogle Scholar
  38. Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246:179–189.PubMedCrossRefGoogle Scholar
  39. Wu S, Lim KC, Huang J, Saidi RF, Sears CL (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA 95:14979–14984PubMedCrossRefGoogle Scholar
  40. Wu S, Morin PJ, Maouyo D, Sears CL (2003) Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124:392–400PubMedCrossRefGoogle Scholar
  41. Yoon M, Spear PG (2002) Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol 76:7203–7208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Biomedical Research Foundation Academy of AthensAthensGreece
  2. 2.Institut PasteurUnité des Interactions Bactéries-CellulesParisFrance
  3. 3.InsermParisFrance
  4. 4.INRAParisFrance

Personalised recommendations