Adherens Junctions and Stem Cells

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 60)

Abstract

The specification, maintenance, division and differentiation of stem cells are integral to the development and homeostasis of many tissues. These stem cells often live in specialized anatomical areas, called niches. While niches can be complex, most involve cell-cell interactions that are mediated by adherens junctions. A diverse array of functions have been attributed to adherens junctions in stem cell biology. These include physical anchoring to the niche, control of proliferation and division orientation, regulation of signaling cascades and of differentiation. In this review, a number of model stem cell systems that highlight various functions of adherens junctions are discussed. In addition, a summary of the current understanding of adherens junction function in mammalian tissues and embryonic and induced pluripotent stem cells is provided. This analysis demonstrates that the roles of adherens junctions are surprisingly varied and integrated with both the anatomy and the physiology of the tissue.

Notes

Acknowledgements

Work on cell adhesion and cytoskeleton organization is supported by a grant to TL from NIH/NIAMS (R01AR055926).

References

  1. Ao A, Erickson RP (1992) Injection of Antisense RNA specific for E-cadherin demonstrates that E-cadherin facilitates compaction, the first differentiative step of the mammalian embryo. Antisense Res Dev 2:153–163PubMedGoogle Scholar
  2. Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18:347–352PubMedCrossRefGoogle Scholar
  3. Barker N, van Es JH, Kuipers J, P. Kujala, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  4. Batlle E, Henderson JT, Beghtel H, Van Den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263PubMedCrossRefGoogle Scholar
  5. Bogard N, Lan L, Xu J, Cohen RS (2007) Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary. Development 134:3413–3418PubMedCrossRefGoogle Scholar
  6. Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1:470–478PubMedCrossRefGoogle Scholar
  7. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195PubMedCrossRefGoogle Scholar
  8. Chen HF, Chuang CY, Lee WC, Huang HP, Wu HC, Ho HN, Chen YJ, Kuo HC (2011a) Surface Marker epithelial cell adhesion molecule and E-cadherin facilitate the identification and selection of induced pluripotent stem cells. Stem Cell Rev 7:722–735CrossRefGoogle Scholar
  9. Chen, S, Wang S, Xie T (2011b) Restricting self-renewal signals within the stem cell niche: multiple levels of control. Curr Opin Genet Dev 6:684–689CrossRefGoogle Scholar
  10. Chen T, Yuan D, Wei B, Jiang J, Kang J, Ling K, Gu Y, Li J, Xiao L, Pei G (2010) E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 28:1315–1325PubMedCrossRefGoogle Scholar
  11. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189PubMedCrossRefGoogle Scholar
  12. Cohen DM, Chen CS (2008) Mechanical control of stem cell differentiation.StemBookGoogle Scholar
  13. den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750CrossRefGoogle Scholar
  14. Desclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, Stow JL (2008) Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 295:C545--C556PubMedCrossRefGoogle Scholar
  15. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  16. Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819PubMedCrossRefGoogle Scholar
  17. Gambardella L, Barrandon Y (2003) The multifaceted adult epidermal stem cell. Curr Opin Cell Biol 15:771–777PubMedCrossRefGoogle Scholar
  18. Gonzalez S, Ibanez E, Santalo J (2011) Influence of e-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres. Stem Cell Rev 7:494–505PubMedCrossRefGoogle Scholar
  19. Gonzalez-Reyes A (2003) Stem cells, niches and cadherins: a view from drosophila. J Cell Sci 116:949–954PubMedCrossRefGoogle Scholar
  20. Haque A, Hexig B, Meng Q, Hossain S, Nagaoka M, Akaike T (2011) The effect of recombinant E-cadherin substratum on the differentiation of endoderm-derived hepatocyte-like cells from embryonic stem cells. Biomaterials 32:2032–2042PubMedCrossRefGoogle Scholar
  21. Holowacz T, Huelsken J, Dufort D, Van Der Kooy D (2011) Neural stem cells are increased after loss of beta-catenin, but neural progenitors undergo cell death. Eur J Neurosci 33:1366–1375PubMedCrossRefGoogle Scholar
  22. Horie M, Ito A, Kiyohara T, Kawabe Y, Kamihira M (2010) E-cadherin gene-engineered feeder systems for supporting undifferentiated growth of mouse embryonic stem cells. J Biosci Bioeng 110:582–587PubMedCrossRefGoogle Scholar
  23. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Hembree M, Yin T, Nakamura Y, Gomei Y, Takubo K, Shiama H, Matsuoka S, Li L, Suda T (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6:194–198PubMedCrossRefGoogle Scholar
  24. Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in drosophila. Proc Natl Acad Sci U S A 106:1117–1121PubMedCrossRefGoogle Scholar
  25. Hsu VW, Prekeris R (2010) Transport at the recycling endosome. Curr Opin Cell Biol 22:528–534PubMedCrossRefGoogle Scholar
  26. Hyafil F, Morello D, Babinet C, Jacob F (1980) A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934PubMedCrossRefGoogle Scholar
  27. Inaba M, Yuan H, Salzmann V, Fuller MT, Yamashita YM (2010) E-cadherin is required for centrosome and spindle orientation in drosophila male germline stem cells. PLoS One 5:e12473Google Scholar
  28. Jaks V, Kasper M, Toftgard R (2010) The hair follicle-a stem cell zoo. Exp Cell Res 316:1422–1428PubMedCrossRefGoogle Scholar
  29. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, Kuttler F, Malanchi I, Birchmeier W, Leutz A, Huelsken J, Held W (2008) Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111:142–149PubMedCrossRefGoogle Scholar
  30. Jin Z, Kirilly D, Weng C, Kawase E, Song X, Smith S, Schwartz J, Xie T (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the drosophila ovary. Cell Stem Cell 2:39–49PubMedCrossRefGoogle Scholar
  31. Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, Van Der Kooy D (2009) E-Cadherin regulates neural stem cell self-renewal. J Neurosci 29:3885–3896PubMedCrossRefGoogle Scholar
  32. Katayama K, Melendez J, Baumann JM, Leslie JR, Chauhan BK, Nemkul N, Lang RA, Kuan CY, Zheng Y, Yoshida Y (2011) Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc Natl Acad Sci U S A 108:7607–7612PubMedCrossRefGoogle Scholar
  33. Kaur P, Potten CS (2011) The interfollicular epidermal stem cell saga: sensationalism versus reality check. Exp Dermatol 20:697–702PubMedCrossRefGoogle Scholar
  34. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571PubMedCrossRefGoogle Scholar
  35. Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F (2008) Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111:160–164PubMedCrossRefGoogle Scholar
  36. Kuo CT, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan LY, Jan YN (2006) Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127:1253–1264PubMedCrossRefGoogle Scholar
  37. Le Borgne R, Bellaiche Y, Schweisguth F (2002) Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 12:95–104PubMedCrossRefGoogle Scholar
  38. le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115PubMedCrossRefGoogle Scholar
  39. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280PubMedCrossRefGoogle Scholar
  40. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631PubMedCrossRefGoogle Scholar
  41. Li P, Zon LI (2010) Resolving the controversy about N-cadherin and hematopoietic stem cells. Cell Stem Cell 6:199–202PubMedCrossRefGoogle Scholar
  42. Li D, Zhou J, Wang L, Shin ME, Su P, Lei X, Kuang H, Guo W, Yang H, Cheng L, Tanaka TS, Leckband DE, Reynolds AB, Duan E, Wang F (2010a) Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 191:631–644CrossRefGoogle Scholar
  43. Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, Wang L (2010b) Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 98:2442–2451CrossRefGoogle Scholar
  44. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010c) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107:9944–9949CrossRefGoogle Scholar
  45. Lock JG, Stow JL (2005) Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 16:1744–1755PubMedCrossRefGoogle Scholar
  46. Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C (2011) Differential requirement for the dual functions of beta-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 13:753–761PubMedCrossRefGoogle Scholar
  47. Maeda K, Takemura M, Umemori M, Adachi-Yamada T (2008) E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure notch signaling in adult drosophila midgut. Genes Cells 13:1219–1227PubMedCrossRefGoogle Scholar
  48. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638PubMedCrossRefGoogle Scholar
  49. McLachlan RW, Yap AS (2007) Not so simple: the complexity of phosphotyrosine signaling at cadherin adhesive contacts. J Mol Med (Berl) 85:545–554CrossRefGoogle Scholar
  50. Michel M, Raabe I, Kupinski AP, Perez-Palencia R, Bokel C (2011) Local BMP receptor activation at adherens junctions in the drosophila germline stem cell niche. Nat Commun 2:415PubMedCrossRefGoogle Scholar
  51. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278PubMedCrossRefGoogle Scholar
  52. Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, Baffour-Awuah NY, Ambruzs DM, Fogli LK, Algra S, Breault DT (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A 108:179–184PubMedCrossRefGoogle Scholar
  53. Moore RN, Cherry JF, Mathur V, Cohen R, Grumet M, Moghe PV (2011) E-Cadherin-expressing feeder cells promote neural lineage restriction of human embryonic stem cells. Stem Cells Dev 21:30-41PubMedCrossRefGoogle Scholar
  54. Nagaoka M, Koshimizu U, Yuasa S, Hattori F, Chen H, Tanaka T, Okabe M, Fukuda K, Akaike T (2006) E-cadherin-coated plates maintain pluripotent ES cells without colony formation. PLoS One 1:e15Google Scholar
  55. Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA (2010) Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol 10:60PubMedCrossRefGoogle Scholar
  56. Najm FJ, Chenoweth JG, Anderson PD, Nadeau JH, Redline RW, McKay RD, Tesar PJ (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8:318–325PubMedCrossRefGoogle Scholar
  57. Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, ten Berge D, Kalani Y (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73:59–66PubMedCrossRefGoogle Scholar
  58. Ohlstein B, Kai T, Decotto E, Spradling A (2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699PubMedCrossRefGoogle Scholar
  59. Ohlstein B, Spradling A (2006) The adult drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474PubMedCrossRefGoogle Scholar
  60. Ohlstein B, Spradling A (2007) Multipotent drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992PubMedCrossRefGoogle Scholar
  61. Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo JM, Kuo CT (2011) Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71:61–75PubMedCrossRefGoogle Scholar
  62. Pan L, Chen S, Weng C, Call G, Zhu D, Tang H, Zhang N, Xie T (2007) Stem cell aging is controlled both intrinsically and extrinsically in the drosophila ovary. Cell Stem Cell 1:458–469PubMedCrossRefGoogle Scholar
  63. Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E (2006) p120-catenin mediates inflammatory responses in the skin. Cell 124:631–644PubMedCrossRefGoogle Scholar
  64. Perez-Moreno M, Song W, Pasolli HA, Williams SE, Fuchs E (2008) Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc Natl Acad Sci U S A 105:15399–15404PubMedCrossRefGoogle Scholar
  65. Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827PubMedCrossRefGoogle Scholar
  66. Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D (2011) E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 12:720–726PubMedCrossRefGoogle Scholar
  67. Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A 92:855–859PubMedCrossRefGoogle Scholar
  68. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920PubMedCrossRefGoogle Scholar
  69. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD (2011) Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144:782–795PubMedCrossRefGoogle Scholar
  70. Schneider MR, Dahlhoff M, Horst D, Hirschi B, Trulzsch K, Muller-Hocker J, Vogelmann R, Allgauer M, Gerhard M, Steininger S, Wolf E, Kolligs FT (2011) A key role for E-cadherin in intestinal homeostasis and paneth cell maturation. PLoS One 5:e14325Google Scholar
  71. Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V (2011) alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33Google Scholar
  72. Singbrant S, Askmyr M, Purton LE, Walkley CR (2011) Defining the hematopoietic stem cell niche: the chicken and the egg conundrum. J Cell Biochem 112:1486–1490PubMedCrossRefGoogle Scholar
  73. Snippert HJ, Van Der Flier LG, Sato T, van Es JH, Van Den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144PubMedCrossRefGoogle Scholar
  74. Solanas G, Cortina C, Sevillano M, Batlle E (2011) Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat Cell Biol 13:1100–1107PubMedCrossRefGoogle Scholar
  75. Soncin F, Mohamet L, Eckardt D, Ritson S, Eastham AM, Bobola N, Russell A, Davies S, Kemler R, Merry CL, Ward CM (2009) Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells 27:2069–2080PubMedCrossRefGoogle Scholar
  76. Soncin F, Mohamet L, Ritson S, Hawkins K, Bobola N, Zeef L, Merry CL, Ward CM (2011) E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells. PLoS One 6:e21463Google Scholar
  77. Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the drosophila ovary. Proc Natl Acad Sci U S A 99:14813–14818PubMedCrossRefGoogle Scholar
  78. Song X, Zhu CH, Doan C, Xie T (2002) Germline stem cells anchored by adherens junctions in the drosophila ovary niches. Science 296:1855–1857PubMedCrossRefGoogle Scholar
  79. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  80. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199PubMedCrossRefGoogle Scholar
  81. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:255–259PubMedCrossRefGoogle Scholar
  82. Tinkle CL, Lechler T, Pasolli HA, Fuchs E (2004) Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc Natl Acad Sci U S A 101:552–557PubMedCrossRefGoogle Scholar
  83. Tinkle CL, Pasolli HA, Stokes N, Fuchs E (2008) New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc Natl Acad Sci U S A 105:15405–15410PubMedCrossRefGoogle Scholar
  84. Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24:1146–1156PubMedCrossRefGoogle Scholar
  85. Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 104:605–617PubMedCrossRefGoogle Scholar
  86. Vestweber D, Ocklind C, Gossler A, Odin P, Obrink B, Kemler R (1985) Comparison of two cell-adhesion molecules, uvomorulin and cell-CAM 105. Exp Cell Res 157:451–461PubMedCrossRefGoogle Scholar
  87. Voog J, D’Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the drosophila testis. Nature 454:1132–1136PubMedCrossRefGoogle Scholar
  88. Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of drosophila melanogaster. Aging Cell 5:297–304PubMedCrossRefGoogle Scholar
  89. Watt FM, Collins CA (2008) Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb Symp Quant Biol 73:503–512PubMedCrossRefGoogle Scholar
  90. Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, Smith A (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13:838–845PubMedCrossRefGoogle Scholar
  91. Xi R (2009) Anchoring stem cells in the niche by cell adhesion molecules. Cell Adh Migr 3:396–401PubMedCrossRefGoogle Scholar
  92. Yagita Y, Sakurai T, Tanaka H, Kitagawa K, Colman DR, Shan W (2009) N-cadherin mediates interaction between precursor cells in the subventricular zone and regulates further differentiation. J Neurosci Res 87:3331–3342PubMedCrossRefGoogle Scholar
  93. Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550PubMedCrossRefGoogle Scholar
  94. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542PubMedCrossRefGoogle Scholar
  95. Young P, Boussadia O, Halfter H, Grose R, Berger P, Leone DP, Robenek H, Charnay P, Kemler R, Suter U (2003) E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO J 22:5723–5733PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Departments of Cell Biology and DermatologyDuke University Medical CenterDurhamUSA

Personalised recommendations