Separable Distance Transformation and Its Applications

Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 2)

Abstract

In binary shape analysis, the distance transformation (DT) and its by-products are fundamental in many applications since they provide volumetric and metric information about the input shape. In this chapter, we present a survey on a specific approach (the dimension by dimension techniques) for the Euclidean metric and with discuss its performances and its generalizations to higher dimension or to specific grid models.

Keywords

Graphical Processing Unit Voronoi Diagram Medial Axis Voronoi Cell Input Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19(2–3), 127–153 (2001) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes—a state-of-the-art report. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization, pp. 109–125. Springer, Berlin (2009) CrossRefGoogle Scholar
  3. 3.
    Attali, D., Edelsbrunner, E.: Inclusion-exclusion formulas for independent complexes. Discrete Comput. Geom. 37(1), 59–77 (2007) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Aurenhammer, F.: Power diagrams: properties, algorithms, and applications. SIAM J. Comput. 16, 78–96 (1987) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Blum, H.: A transformation for extracting descriptors of shape. In: Models for the Perception of Speech and Visual Forms (1967) Google Scholar
  6. 6.
    Boissonnat, J.D., Cerezo, A., Devillers, O., Duquesne, J., Yvinec, M.: An algorithm for constructing the convex hull of a set of spheres in dimension d. Comput. Geom. 6(2), 123–130 (1996) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34(3), 344–371 (1986) CrossRefGoogle Scholar
  8. 8.
    Breu, H., Kirkpatrick, D., Werman, M.: Linear time Euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 529–533 (1995) CrossRefGoogle Scholar
  9. 9.
    Broutta, A., Coeurjolly, D., Sivignon, I.: Hierarchical discrete medial axis for sphere-tree construction. In: International Workshop on Combinatorial Image Analysis, IWCIA 2009. Lecture Notes in Computer Science, vol. 5852, pp. 56–67. Springer, Berlin (2009) CrossRefGoogle Scholar
  10. 10.
    Cao, T.T., Tang, K., Mohamed, A., Tan, T.S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, SI3D 2010, pp. 83–90 (2010) Google Scholar
  11. 11.
    Chaussard, J., Bertrand, G., Couprie, M.: Characterizing and detecting toric loops in n-dimensional discrete toric spaces. In: International Conference on Discrete Geometry for Computer Imagery, DGCI 2008. Lecture Notes in Computer Science, vol. 4992. Springer, Berlin (2008) Google Scholar
  12. 12.
    Chehadeh, Y., Coquin, D., Bolon, P.: A skeletonization algorithm using chamfer distance transformation adapted to rectangular grids. In: IEEE International Conference on Pattern Recognition, ICPR 1996, vol. 2, pp. 131–135 (1996) CrossRefGoogle Scholar
  13. 13.
    Chen, L., Panin, G., Knoll, A.: Multi-camera people tracking with hierarchical likelihood grids. In: International Conference on Computer Vision Theory and Applications, VISAPP 2011 (2011) Google Scholar
  14. 14.
    Ciuc, M., Coquin, D., Bolon, P.: Quantitative assessment of two skeletonization algorithms adapted to rectangular grids. In: International Conference on Image Analysis and Processing, CIAP 1997, vol. 1, pp. 588–595 (1997) Google Scholar
  15. 15.
    Coeurjolly, D.: Distance transformation, reverse distance transformation and discrete medial axis on toric spaces. In: IEEE International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008) CrossRefGoogle Scholar
  16. 16.
    Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007) CrossRefGoogle Scholar
  17. 17.
    Coeurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Comput. Graph. 30(1), 46–53 (2006) CrossRefGoogle Scholar
  18. 18.
    Coléou, C., Lesaffre, B., Brzoska, J.-B., Ludwig, W., Boller, E.: Three-dimensional snow images by X-ray microtomography. Ann. Glaciol. (2001). doi: 10.3189/172756401781819418 Google Scholar
  19. 19.
    Cuisenaire, O.: Locally adaptable mathematical morphology using distance transformations. Pattern Recognit. 39(3), 405–416 (2006) MATHCrossRefGoogle Scholar
  20. 20.
    Cuisenaire, O., Macq, B.: Fast Euclidean distance transformation by propagation using multiple neighborhoods. Comput. Vis. Image Underst. 76(2), 163–172 (1999) CrossRefGoogle Scholar
  21. 21.
    Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: International Conference on Computer Graphics and Interactive Techniques, pp. 277–286 (1999) Google Scholar
  22. 22.
    Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980) CrossRefGoogle Scholar
  23. 23.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2000) MATHGoogle Scholar
  24. 24.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972) CrossRefGoogle Scholar
  25. 25.
    Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Annual ACM Symposium on Computational Geometry, pp. 106–115 (1998) Google Scholar
  26. 26.
    Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2179–2195 (2009) CrossRefGoogle Scholar
  27. 27.
    Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. 40(1), 1–44 (2008) CrossRefGoogle Scholar
  28. 28.
    Fouard, C.: Extraction de paramètres morphométriques pour l’étude du réseau micro-vasculaire cérébral. Ph.D. thesis, Université de Nice Sophia Antipolis (2005) Google Scholar
  29. 29.
    Fouard, C., Malandain, G.: 3-D chamfer distances and norms in anisotropic grids. Image Vis. Comput. 23(2), 143–158 (2005) CrossRefGoogle Scholar
  30. 30.
    Fouard, C., Malandain, G., Prohaska, S., Westerhoff, M.: Blockwise processing applied to brain microvascular network study. IEEE Trans. Med. Imaging 25(10), 1319–1328 (2006) CrossRefGoogle Scholar
  31. 31.
    Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recognit. 40(9), 2453–2474 (2007) MATHCrossRefGoogle Scholar
  32. 32.
    Gotsman, C., Lindenbaum, M.: Euclidean Voronoi labelling on the multidimensional grid. Pattern Recognit. Lett. 16, 409–415 (1995) CrossRefGoogle Scholar
  33. 33.
    Grundmann, M., Meier, F., Essa, I.: 3D shape context and distance transform for action recognition. In: IEEE International Conference on Pattern Recognition, ICPR 2008 (2008) Google Scholar
  34. 34.
    Guan, W., Ma, S.: A list-processing approach to compute Voronoi diagrams and the euclidean distance transform. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 757–761 (1998) CrossRefGoogle Scholar
  35. 35.
    Hayashi, T., Nakano, K., Olariu, S.: Optimal parallel algorithms for finding proximate points, with applications. IEEE Trans. Parallel Distrib. Syst. 9(12), 1153–1166 (1998) CrossRefGoogle Scholar
  36. 36.
    Hirata, T.: A unified linear-time algorithm for computing distance maps. Inf. Process. Lett. 58(3), 129–133 (1996) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Karavelas, M.I.: Voronoi diagrams in CGAL. In: European Workshop on Computational Geometry, EWCG 2006, pp. 229–232 (2006) Google Scholar
  38. 38.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Mateo (2004) MATHGoogle Scholar
  39. 39.
    Lau, B., Sprunk, C., Burgard, W.: Improved updating of Euclidean distance maps and Voronoi diagrams. In: IEEE International Conference on Intelligent Robots and Systems, IROS 2010 (2010) Google Scholar
  40. 40.
    Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003) CrossRefGoogle Scholar
  41. 41.
    Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: International Symposium on Mathematical Morphology, ISMM 2000, pp. 331–340 (2000) Google Scholar
  42. 42.
    Michikawa, T., Suzuki, H.: Sparse grid distance transforms. Graph. Models 72(4), 35–45 (2010) CrossRefGoogle Scholar
  43. 43.
    Montanari, U.: Continuous skeletons from digitized images. J. ACM 16(1), 534–549 (1969) MATHCrossRefGoogle Scholar
  44. 44.
    Mukherjee, J., Das, P.P., Kumarb, M.A., Chatterjib, B.N.: On approximating euclidean metrics by digital distances in 2D and 3D. Pattern Recognit. Lett. 21(6–7), 573–582 (2000) CrossRefGoogle Scholar
  45. 45.
    Mullikin, J.C.: The vector distance transform in two and three dimensions. CVGIP, Graph. Models Image Process. 54(6), 526–535 (1992) CrossRefGoogle Scholar
  46. 46.
    Nagy, B.: A comparison among distances based on neighborhood sequences in regular grids. In: Image Analysis, 14th Scandinavian Conference. Lecture Notes in Computer Science, vol. 3540, pp. 1027–1036. Springer, Berlin (2005) Google Scholar
  47. 47.
    Park, S.H., Lee, S.S., Kim, J.H.: The Delaunay triangulation by grid subdivision. In: Computational Science and Its Applications, pp. 1033–1042 (2005) Google Scholar
  48. 48.
    Prevost, S., Lucas, L., Bittar, E.: Multiresolution and shape optimization of implicit skeletal model. In: Winter School in Computer Graphics and Visualization, WSCG 2001 (2001) Google Scholar
  49. 49.
    Ragnemalm, I.: The Euclidean distance transform. Ph.D. thesis, Linköping University (1993) Google Scholar
  50. 50.
    Remy, E., Thiel, E.: Optimizing 3D chamfer masks with norm constraints. In: International Workshop on Combinatorial Image Analysis, Caen, pp. 39–56 (2000) Google Scholar
  51. 51.
    Rong, G., Tan, T.-S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, SI3D 2006, p. 109 (2006) Google Scholar
  52. 52.
    Rong, G., Tan, T.-S.: Variants of jump flooding algorithm for computing discrete Voronoi diagrams. In: IEEE International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2007, pp. 176–181 (2007) Google Scholar
  53. 53.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966) MATHCrossRefGoogle Scholar
  54. 54.
    Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognit. 1(1), 33–61 (1968) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Saito, T., Toriwaki, J.-I.: New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognit. 27(11), 1551–1565 (1994) CrossRefGoogle Scholar
  56. 56.
    Samet, H.: A quadtree medial axis transform. Commun. ACM 26(9), 680–693 (1983) CrossRefGoogle Scholar
  57. 57.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Reading (1990) Google Scholar
  58. 58.
    Schouten, T., Broek, E.V.: Fast exact Euclidean distance (FEED) transformation. In: IEEE International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 594–597 (2004) Google Scholar
  59. 59.
    Sintorn, I.-M., Borgefors, G.: Weighted distance transforms for volume images digitized in elongated voxel grids. Pattern Recognit. Lett. 25(5), 571–580 (2004) CrossRefGoogle Scholar
  60. 60.
    Strand, R.: Distance functions and image processing on point-lattices with focus on the 3D face- and body-centered cubic grids. Ph.D. thesis, Uppsala University (2008) Google Scholar
  61. 61.
    Sud, A., Otaduy, M.A., Manocha, D.: DiFi: fast 3D distance field computation using graphics hardware. Comput. Graph. Forum 23(3), 557–566 (2004) CrossRefGoogle Scholar
  62. 62.
    Tam, R., Heidrich, W.: Shape simplification based on the medial axis transform. In: IEEE Visualization, VIS 2003 (2003) Google Scholar
  63. 63.
    Tustison, N.J., Suquiera, M., Gee, J.C.: N-D linear time exact signed Euclidean distance transform. Insight J. (January–June 2006). http://hdl.handle.net/1926/171
  64. 64.
    Vacavant, A.: Fast distance transformation on two-dimensional irregular grids. Pattern Recognit. 43(10), 3348–3358 (2010) MATHCrossRefGoogle Scholar
  65. 65.
    Vacavant, A., Coeurjolly, D.: Medial axis extraction on irregular isothetic grids. In: International Workshop on Combinatorial Image Analysis, IWCIA 2009. Progress in Combinatorial Image Analysis, pp. 207–220. Research Publishing Service, Singapore (2009) Google Scholar
  66. 66.
    Vacavant, A., Coeurjolly, D., Tougne, L.: Distance transformation on two-dimensional irregular isothetic grids. In: International Conference on Discrete Geometry for Computer Imagery, DGCI 2008. Lecture Notes in Computer Science, vol. 4292, pp. 238–249. Springer, Berlin (2008) CrossRefGoogle Scholar
  67. 67.
    Vacavant, A., Coeurjolly, D., Tougne, L.: A novel algorithm for distance transformation on irregular isothetic grids. In: International Conference on Discrete Geometry for Computer Imagery, DGCI 2009. Lecture Notes in Computer Science, vol. 5810, pp. 469–480. Springer, Berlin (2009) CrossRefGoogle Scholar
  68. 68.
    Vacavant, A., Coeurjolly, D., Tougne, L.: Separable algorithms for distance transformations on irregular grids. Pattern Recognit. Lett. 32(9), 1356–1364 (2011) CrossRefGoogle Scholar
  69. 69.
    van den Broek, E.L., Schouten, T.E.: Distance transforms: academics versus industry. Recent Patents Comput. Sci. 4(1), 1–15 (2011) CrossRefGoogle Scholar
  70. 70.
    Voronoi, G.: Nouvelles applications des paramtres continus la théorie des formes quadratiques. Deuxième mémoire : Recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198–287 (1908) MATHGoogle Scholar
  71. 71.
    Vörös, J.: Low-cost implementation of distance maps for path planning using matrix quadtrees and octrees. Robot. Comput.-Integr. Manuf. 17(13), 447–459 (2001) CrossRefGoogle Scholar
  72. 72.
    Wong, W.T., Shih, F.Y., Su, T.F.: Thinning algorithms based on quadtree and octree representations. Inf. Sci. 176(10), 1379–1394 (2006) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.LIRIS, UMR CNRS 5205Université de LyonVilleurbanneFrance
  2. 2.Clermont UniversitéUniversité d’Auvergne, ISIT, CNRS, UMR6284Clermont-FerrandFrance

Personalised recommendations