Accounting More Precisely for Peat and Other Soil Carbon Resources

  • Hermann F. Jungkunst
  • Jan Paul Krüger
  • Felix Heitkamp
  • Stefan Erasmi
  • Sabine Fiedler
  • Stephan Glatzel
  • Rattan Lal


In the context of “recarbonization”, it is important to know where the soil C stocks are located and how much of these are prone to emission to the atmosphere. While it may appear to be a trivial question considering available global estimates and maps, yet there is a strong need to emphasize that erroneous estimates are made in assessing the global soil C stocks. Without doubt, peatlands hold the single most important soil C stock at the global scale, and these soils are mostly located in the northern latitudes between 50°N and 70°N. However, there are additional wetlands or other ecosystems which also hold potentially relevant amounts of soil C stocks. From the soil science perspective, it implies that there are other hydromorphic soils, besides Histosols and potentially other soil types, also containing relevant amounts of soil C stock. Differences in scientific approaches, which include terminology, definitions, depth to which soil C is considered, and bulk density, etc., lead to different estimates of soil C stocks. Recent estimates indicate that peatlands cover only 3% of the global land surface but contain 40% of the soil C stocks to 1-m depth. Consequently, only small differences in the estimate of the land coverage lead to great differences in the soil C stock estimates. Typically peatlands, wetlands and other ecosystems rich in soil C, cover only small parts of the landscapes, and yet are not easily accounted for by any inventory or mapping attempts. With estimates presented in this chapter, hydromorphic soils, aside Histosols, add 10% soil C stock to the estimates of peatland’s Histosols. Additionally, non hydromorphic Podzols add another 10% to the soil C stock. Above all, soils from the steppe biome must also be considered. The soil C stock of Cryosols (frozen soil C not separated from peatlands) contain as much as 1,500 Pg C, which is as much C as the total stock estimated in world soils to 1-m depth. Thus, coordinated and substantial efforts are needed to improve the mapping of ecosystems, particularly of those which are rich in soil C stocks. One option is to improve remote sensing techniques for wetlands. These efforts must be undertaken quickly because soil C stocks are being depleted not only by the positive feedback with the climate system but also directly by land use change. The conversion of peatlands to agricultural and forestry uses is not sustainable because of the depletion C stocks, and especially not for conversion of peatlands for “biofuels” production.


Hydromorphic soils Histosols Fluvisols Gleysols Planosols Chernozems Phaeozem Kastanozem Greyzem Podzols Podzols Aerobic decomposition Anaerobic decomposition Turnover rate Wetlands Methane Soil carbon budget Seasonally inundated Mire Marsh Swamp Fen Bog Temperate peatland Tropical peatland Biofuel Oil palm Biodiesel Sphagnum Peatland conversion Ethanol Prairie Methane Water table Permafrost CO2-equivalent Peatland distribution Land cover Land use change Abiotic Anoxic sites Carbon sequestration 





dissolved organic C


global carbon cycle


Global land cover


Global land cover characteristics


greenhouse gases


land cover classification system


million ha


organic matter


soil organic carbon


soil organic matter


global warming potential


  1. AG-Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Bodenkundliche Kartieranleitung, HannoverGoogle Scholar
  2. Arino OD, Gross F, Ranera L et al (2008) GlobCover: ESA service for global land cover from MERIS. 2007 IEEE Int Geosci Remote Sens Symp IGARSS:2412–2415Google Scholar
  3. Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74:755–774CrossRefGoogle Scholar
  4. Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358CrossRefGoogle Scholar
  5. Augustin J, Chojnicki B (2008) Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach der Wiedervernässung von degradiertem Niedermoorgrünland. In: Gelbrecht J, Zak D, Augustin (eds) Phosphor- und Kohlenstoff-Dynamik in wiedervernässtem Mooren des Peenetals in Mecklenburg-Vorpommern. Berichte des IGB 26/2008. Berlin, GermanyGoogle Scholar
  6. Bartholomé E, Belward AS (2000) A new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977CrossRefGoogle Scholar
  7. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  8. Blackford J, Chambers FM (1993) Determining the degree of peat decomposition in peat-based palaeoclimatic studies. Int Peat J 5:7–24Google Scholar
  9. Bridgeham SD, Pastor J, Dewey B et al (2008) Rapid carbon response of peatlands to climate change. Ecology 89:3041–3048CrossRefGoogle Scholar
  10. Caseldine CJ, Baker A, Charman DJ et al (2000) A comparative study of optical properties of NaOH peat extracts: implications for humification studies. Holocene 10:649–658CrossRefGoogle Scholar
  11. Charman D (2002) Peatlands and environmental change. Wiley, ChichesterGoogle Scholar
  12. Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  13. Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654CrossRefGoogle Scholar
  14. Collins ME, Kuehl RJ (2001) Organic matter accumulation and organic soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Genesis, hydrology, landscape and classification. Lewis Publishers, Boca Raton/London/New York/Washington, pp 137–162Google Scholar
  15. Couwenberg J, Thiele A, Tanneberger F et al (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89CrossRefGoogle Scholar
  16. D’Angelo EM, Reddy KR (1999) Regulators of heterothrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830CrossRefGoogle Scholar
  17. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173PubMedCrossRefGoogle Scholar
  18. Di Gregorio A (2005) Land cover classification system, classification concepts and user manual for software (version 2). Environment and natural resources service series no. 8. FAO, RomeGoogle Scholar
  19. Elberling B, Christiansen HH, Hansen BU (2010) High nitrous oxide production from thawing permafrost. Nat Geosci 3:332–335CrossRefGoogle Scholar
  20. FAO/UNESCO (1995, 2003) The digitized soil map of the world and derived soil properties (version 3.5). FAO land and water digital media series 1. FAO, RomeGoogle Scholar
  21. Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238PubMedCrossRefGoogle Scholar
  22. Fiedler S, Holl BS, Jungkunst HF (2005) Methane budget of a Black Forest spruce ecosystem considering soil pattern. Biogeochemistry 76:1–20CrossRefGoogle Scholar
  23. Friedl MA, McIver DK, Hodges JCF et al (2002) Global land cover mapping from MODIS, algorithms and early results. Remote Sens Environ 83:287–302CrossRefGoogle Scholar
  24. Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the C(4)MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  25. Fritz S, McCallum I, Schill C et al (2009) The use of crowdsourcing to improve global land cover. Remote Sens 1(3):345–354CrossRefGoogle Scholar
  26. Frolking S, Li C, Braswell R et al (2004) Short- and long-term greenhouse gas and radiative forcing impacts of changing water management in Asian rice paddies. Glob Change Biol 10:1180–1196CrossRefGoogle Scholar
  27. Frolking S, Talbot J, Jones MC et al (2011) Peatlands in the Earth’s 21st century climate system. Environ Rev 19:371–396CrossRefGoogle Scholar
  28. Glatzel S (2011) Biogeochemische Stoffkreisläufe: Kohlenstoff- und Stickstoffkreislauf. In: Gebhardt H et al (Hrsg) Geographie. 2. Aufl. Spektrum, Heidelberg, pp S. 624–628Google Scholar
  29. Glatzel S, Koebsch F, Beetz S et al (2011) Maßnahmen zur Minderung der Treibhausgasfreisetzung aus Mooren im Mittleren Mecklenburg. Telma 4:85–106Google Scholar
  30. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1(2):182–195CrossRefGoogle Scholar
  31. Hansen MC, Townshend JRG, DeFries RS et al (2005) Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int J Remote Sens 26:4359–4380CrossRefGoogle Scholar
  32. Harris ESJ (2008) Ethnobryology: traditional uses and folk classification of bryophytes. The Bryologist 111(2):169–217CrossRefGoogle Scholar
  33. Heimann M (2011) Enigma of the recent methane budget. Nature 476:157–158PubMedCrossRefGoogle Scholar
  34. Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25. doi: 10.1029/2009GB003718
  35. Herold M, Mayaux P, Woodcock CE et al (2008) Some challenges in global land cover mapping, an assessment of agreement and accuracy in existing 1 km datasets. Earth observations for terrestrial biodiversity and ecosystems special issue. Remote Sens Environ 112(5):2538–2556CrossRefGoogle Scholar
  36. Ilnicki P (2002) Peatlands and peat. Wydawnictwo AR, PozmanGoogle Scholar
  37. IPS (2011) Global peat resources. Accessed on 29 Dec 2011
  38. Joosten H, Clarke D (2002) Wise use of mires and peatlands. Intl Mire Conserv Group, Intl Peat Soc, VapaudenkatuGoogle Scholar
  39. Jungkunst HF (2010) Soil science: Arctic thaw. Nat Geosci 3:306–307CrossRefGoogle Scholar
  40. Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere 27(6):999–1023CrossRefGoogle Scholar
  41. Jungkunst HF, Fiedler S (2007) Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Glob Change Biol 13:2668–2683CrossRefGoogle Scholar
  42. Jungkunst HF, Flessa H, Scherber C et al (2008) Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047–2054CrossRefGoogle Scholar
  43. Kai FM, Tyler SC, Randerson JT et al (2011) Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476:194–197PubMedCrossRefGoogle Scholar
  44. Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162CrossRefGoogle Scholar
  45. Kögel-Knabner I, Amelung W, Cao ZH et al (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14CrossRefGoogle Scholar
  46. Krankina ON, Pflugmacher D, Friedl M et al (2008) Meeting the challenge of mapping peatlands with remotely sensed data. Biogeosciences 5:1809–1820CrossRefGoogle Scholar
  47. Lal R (2002) Soil carbon dynamics in cropland and rangeland. Environ Pollut 116:353–362PubMedCrossRefGoogle Scholar
  48. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627PubMedCrossRefGoogle Scholar
  49. Lane J, Minkkinen K, Trettin C (2009) Direct human impacts on the peatland carbon sink. Carbon cycling in northern peatlands. Geophys Mono Ser 184:71–78CrossRefGoogle Scholar
  50. Li JH, Chen WJ (2005) A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. Int J Remote Sens 26:5051–5069CrossRefGoogle Scholar
  51. Li WH, Dickinson RE, Fu R et al (2007) Future precipitation changes and their implications for tropical peatlands. Geophys Res Lett 34:L08701. doi: 10.1029/2006GL029022
  52. Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547CrossRefGoogle Scholar
  53. Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491CrossRefGoogle Scholar
  54. Loveland TR, Reed BC, Brown JF et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Remote Sens 21:1303–1330CrossRefGoogle Scholar
  55. MacDonald GM, Beilman DW, Kremenetski KV et al (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:285–288PubMedCrossRefGoogle Scholar
  56. Marushchack ME, Pitkämäki A, Koponen H et al (2011) Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob Change Biol 17:2601–2614CrossRefGoogle Scholar
  57. Mikhailova EA, Post CJ (2006) Organic carbon stocks in the Russian Chernozems. Eur J Soil Sci 57:330–336CrossRefGoogle Scholar
  58. Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, HobokenGoogle Scholar
  59. Mitsch WJ, Gosselink JG, Anderson CJ et al (2009) Wetland ecosystems. Wiley, HobokenGoogle Scholar
  60. National Wetland Working Group (1997) The Canadian wetland classification system, 2nd edn. University of Waterloo, WaterlooGoogle Scholar
  61. Nilsson M, Mikkela C, Sundh I et al (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. J Geophys Res Atmos 106:20847–20860CrossRefGoogle Scholar
  62. Okruzko H (1996) Agricultural use of peatlands. In: Lappalainen E (ed) Global peat resources. Intl Peat Society, JyskaGoogle Scholar
  63. Page SE, Siegert F, Rieley JO et al (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65PubMedCrossRefGoogle Scholar
  64. Page SE, Wüst RAJ, Weiss D, Rieley JO et al (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quaternary Sci 19:625–635CrossRefGoogle Scholar
  65. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818CrossRefGoogle Scholar
  66. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic, San DiegoGoogle Scholar
  67. Pflugmacher D, Krankina ON, Cohen WB (2007) Satellite based peatland mapping, potential of the MODIS sensor, global planet. Change 56:248–257Google Scholar
  68. Poulter B, Christensen NL, Halpin PN (2006) Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. J Geophys Res Atmos 111. doi: 10.1029/2005JD006455
  69. Prechtel A, von Luetzow M, Schneider BU et al (2009) Organic carbon in soils of Germany: status quo and the need for new data to evaluate potentials and trends of soil organic carbon sequestration. J Plant Nutr Soil Sci 172:601–614CrossRefGoogle Scholar
  70. Primavesi A (1984). Manejo ecológico del suelo. La agricultura en regiones tropicales. 5ta Edición. El Ateneo, Rio de Janeiro, 499 ppGoogle Scholar
  71. Repo ME, Susiluoto S, Lind SE et al (2009) Large N2O emissions from cryoturbated peat soils in tundra. Nat Geosci 2:189–192CrossRefGoogle Scholar
  72. Richardson JL, Arndt JL, Montgomery JA (2001) Hydrology of wetland and related soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Genesis, hydrology, landscape and classification. Lewis Publishers, Boca Raton/London/New York/Washington, DCGoogle Scholar
  73. Roman-Cuesta RM, Salinas N, Asbjornsen H et al (2011) Implications of fires on carbon budgets in Andean cloud montane forest: the importance of peat soils and tree resprouting. Forest Ecol Manage 261:1987–1997CrossRefGoogle Scholar
  74. Rosenqvist A, Finlayson CM, Lowry J et al (2007) The potential of long wavelength satellite borne radar to support implementation of the Ramsar Wetlands Convention. Aquat Conserv Mar Freshw Ecosyst 17(3):229–244CrossRefGoogle Scholar
  75. Roulet N, Moore T, Bubier J et al (1992) Northern fens-methane flux and climatic change. Tellus B 44:100–105CrossRefGoogle Scholar
  76. Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, OxfordCrossRefGoogle Scholar
  77. Sahrawat KL (2004) Organic matter accumulation in submerged soils. Adv Agron 81:169–201CrossRefGoogle Scholar
  78. Sauer D, Sponagel H, Sommer M et al (2007) Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:581–597CrossRefGoogle Scholar
  79. SCEP (1970) Man’s impact on the global environment: assessment and recommendations for action. The MIT Press, CambridgeGoogle Scholar
  80. Schawe M, Glatzel S, Gerold G (2007) Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69:83–90CrossRefGoogle Scholar
  81. Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San DiegoGoogle Scholar
  82. Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nat Geosci 478:49–56Google Scholar
  83. Schulze E-D, Luyssaert S, Ciais P et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. CarboEuropeTeam 2:842–850Google Scholar
  84. Strack M (ed) (2008) Peatlands and climate change. Intl Peat Soc, VapaudenkatuGoogle Scholar
  85. Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23. doi: 10.1029/2008GB003327
  86. Thompson JA, Bell JC (1996) Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota. SSSA J 60:1979–1988Google Scholar
  87. Thompson JA, Bell JC (2001) Hydric soils indicators in mollisol landscapes. In: Richardson JL Vepraskas MJ (ed) Wetland soils. Genesis, hydrology, landscape and classification. Lewis Publishers, Boca Raton, pp 371–382Google Scholar
  88. Tiner RW (1998) In search of swampland: a wetland source book and field guide. Rutgers University Press, New BrunswickGoogle Scholar
  89. Tiner RW (1999) Wetland indicators: a guide to wetland identification, delineation, classification and mapping. Lewis Publishers, Boca RatonCrossRefGoogle Scholar
  90. Tooth S, McCarthy TS (2007) Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Prog Phys Geogr 31:3–41CrossRefGoogle Scholar
  91. Turquety S, Logan JA, Jacob DJ et al (2007) Inventory of boreal fire emissions for North America in 2004: importance of peat burning and pyroconvective injection. J Geophys Res Atmos 112. doi: 10.1029/2006JD007281
  92. Turunen J, Tomppo E, Tolonen K et al (2002) Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. Holocene 12(1):69–80CrossRefGoogle Scholar
  93. van der Werf GR, Randerson JT, Giglio L et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735CrossRefGoogle Scholar
  94. Vicca S, Janssens IA, Flessa H et al (2009) Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels. Geobiology 7:465–476PubMedCrossRefGoogle Scholar
  95. Waksman SA (1936) Humus – origin, chemical composition, and importance in nature. The Williams and Wilkins Company, BaltimoreGoogle Scholar
  96. Weltzin JF, Pastor J, Harth C et al (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478CrossRefGoogle Scholar
  97. Wheeler BD, Shaw SC (1995) Restoration of damaged peatlands with particular reference to lowland raised bogs affected by peat extraction. Department of the Environment, University of Sheffield, LondonGoogle Scholar
  98. Wieder RK, Vitt DH (eds) (2006) Boreal peatland ecosystems. Springer, BerlinGoogle Scholar
  99. Wieder RK, Scott KD, Kamminga K et al (2009) Postfire carbon balance in boreal bogs of Alberta, Canada. Glob Change Biol 15:63–81CrossRefGoogle Scholar
  100. World Energy Council (2007) Survey of energy resources 2007. London, UK. pp 586 (ISBN: 0946 121 265)Google Scholar
  101. WRB (2007) World reference base for soil resources 2006, first update 2007. FAO, Rome, pp 128Google Scholar
  102. Yu Z, Loisel J, Brosseau DP et al (2010) Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett 110. doi: 10.1029/2010GL043584
  103. Yu Z, Beilman DW, Frolking S et al (2011) Peatlands and their role in the global carbon cycle. EOS 92(12):97–98CrossRefGoogle Scholar
  104. Zoltai SC, Tarnocai C (1975) Perennial frozen peatlands in the western Arctic and sub-Arctic of Canada. Can J Earth Sci 12:28–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hermann F. Jungkunst
    • 1
  • Jan Paul Krüger
    • 1
  • Felix Heitkamp
    • 1
  • Stefan Erasmi
    • 2
  • Sabine Fiedler
    • 3
  • Stephan Glatzel
    • 4
  • Rattan Lal
    • 5
  1. 1.Landscape Ecology, Faculty of Geoscience and GeographyGeorg August-UniversityGöttingenGermany
  2. 2.Cartography, GIS and Remote Sensing Section, Faculty of Geoscience and GeographyGeorg August-UniversityGöttingenGermany
  3. 3.Institute for Geography Soil ScienceJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Landscape Ecology and Site EvaluationUniversity of RostockRostockGermany
  5. 5.Carbon Sequestration and Management Center, School of Environment and Natural ResourcesThe Ohio State UniversityCloumbusUSA

Personalised recommendations