Blood Flow Simulation and Applications

  • Luisa Costa Sousa
  • Catarina F. Castro
  • Carlos Conceição António
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 1)

Abstract

In the vascular system altered flow conditions, such as separation and flow-reversal zones play an important role in the development of arterial diseases. Nowadays computational biomechanics modeling is still in the research and development stage. This chapter presents a numerical computational methodology for blood flow simulation using the Finite Element method outlining field equations and approaches for numerical solutions. Due to the complexity of the vascular system simplifying assumptions for the mathematical modeling process are made. Two applications of the developed tool to describe arterial hemodynamics are presented, a flow simulation in the human carotid artery bifurcation and a search for an optimized geometry of an artificial bypass graft.

Keywords

Pareto Front Pareto Optimal Solution Galerkin Formulation Carotid Artery Bifurcation Divider Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially done in the scope of project PTDC/SAU-BEB/102547/2008, “Blood flow simulation in arterial networks towards application at hospital”, financially supported by FCT – Fundação para a Ciência e a Tecnologia from Portugal.

References

  1. 1.
    Pedrizzetti G, Perktold K (2003) Cardiovascular fluid mechanics. Springer, New YorkGoogle Scholar
  2. 2.
    Su CM, Lee D, Tran-Son-Tay R, Shyy W (2005) Fluid flow structure in arterial bypass anastomosis. J Biomech Eng 127:611–618CrossRefGoogle Scholar
  3. 3.
    Maurits NM, Loots GE, Veldman AEP (2007) The influence of vessel elaticity and peripheral resistance on the carotid artery flow wave form: a CFD model compared to in vivo ultrasound measurements. J Biomech 40:427–436CrossRefGoogle Scholar
  4. 4.
    De Santis G, Mortier P, De Beule M, Segers P, Verdonck P, Verhegghe B (2010) Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Comput 48(4):371–380CrossRefGoogle Scholar
  5. 5.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Meth Appl Mech Eng 158:155–196MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Quarteroni A, Tuveri M, Veneziani A (2003) Computational vascular fluid dynamics: problems, models and methods. Comput Vis Sci 2:163–197CrossRefGoogle Scholar
  7. 7.
    Leuprecht A, Kozerke S, Peter Boesiger P, Perktold K (2003) Blood flow in the human ascending aorta: a combined MRI and CFD study. J Eng Math 47(3):387–404MATHCrossRefGoogle Scholar
  8. 8.
    Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, LaMuraglia GM, Lee RT, Kamm RD (2004) Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling and histology. Ann Biomed Eng 32(7):932–946CrossRefGoogle Scholar
  9. 9.
    Schumann C, Neugebauer M, Bade R, Preim B, Peitgen H-O (2008) Implicit vessel surface reconstruction for visualization and CFD simulation. Int J Comput Assist Radiol Surg 2:275–286CrossRefGoogle Scholar
  10. 10.
    Himeno R (2003) Blood flow simulation toward actual application at hospital. In: The 5th Asian computational fluid dynamics, KoreaGoogle Scholar
  11. 11.
    Perktold K, Resch M, Florian H (1991) Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME J Biomech Eng 113:463–475CrossRefGoogle Scholar
  12. 12.
    Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-Newtonian effects. Comput Meth Biomech Biomed Eng 8(2):127–137CrossRefGoogle Scholar
  13. 13.
    Huang H, Modi VJ, Seymour BR (1995) Fluid mechanics of stenosed arteries. Int J Eng Sci 33:815–828MATHCrossRefGoogle Scholar
  14. 14.
    Probst M, Lülfesmann M, Bücker HM, Behr M, Bischof CH (2010) Sensitivity of shear rate in artificial grafts using automatic differentiation. Int J Numer Meth Fluids 62:1047–1062MATHGoogle Scholar
  15. 15.
    Babuska I (1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Brezzi F (1974) on the existence, uniqueness and approximation of saddle-point problems ar sing from Lagrangian multipliers. RAIRO Anal Numér 8(R2):129–151MathSciNetMATHGoogle Scholar
  17. 17.
    Babuska I, Osborn J, Pitkaranta J (1980) Analysis of mixed methods using, mesh dependent norms. Math Comp 35:1039–1062MathSciNetMATHGoogle Scholar
  18. 18.
    Perktold K, Rappitsch G (1995) Mathematical modeling of local arterial flow and vessel mechanics. In: Crolet J, Ohayon R (eds) Computational methods for fluid structure interaction, vol 306, Pitman research notes in mathematics. Harlow, Longman, pp 230–245Google Scholar
  19. 19.
    Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comp 22:745–762MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Courant R (1943) Variational methods for the solution of problems of equilibrium and vibration. Bull Amer Math Soc 49:1–23MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element method for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolations. Comput Meth Appl Mech Eng 59:85–99MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element method for computational fluid dynamics: VIII the Galerkin/least squares method for advective diffusive equations. Comput Meth Appl Mech Eng 73:173–189MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Ku DN, Giddens DP, Zarins CZ, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arterioscleresis 5:293–302CrossRefGoogle Scholar
  24. 24.
    Schaffer JD (1985) Multi-objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st international conference of genetic algorithms, pp 93–100Google Scholar
  25. 25.
    Marler RT, Arora JS (2009) The weighted sum method for multi-objective optimization: new insights. Struct Multidisc Optim. doi: 10.1007/s00158-009-0460-7
  26. 26.
    Kim IY, de Weck OL (2006) Adaptive weighted sum method for multiobjective optimization: a new method for Pareto. Struct Multidiscip Optim 31:105–116MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New YorkMATHGoogle Scholar
  28. 28.
    António CC, Castro CF, Sousa LC (2005) Eliminating forging defects using genetic algorithms. Mater Manuf Process 20:509–522CrossRefGoogle Scholar
  29. 29.
    Castro CF, António CAC, Sousa LC (2004) Optimisation of shape and process parameters in metal forging using genetic algorithms. J Mater Process Technol 146:356–364CrossRefGoogle Scholar
  30. 30.
    Probst M, Lülfesmann M, Nicolai M, Bücker HM, Behr M, Bischof CH (2010) Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. Comput Meth Appl Mech Eng 199:997–1005MATHCrossRefGoogle Scholar
  31. 31.
    Cochran JK, Horng S, Fowler JW (2003) A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Comput Oper Res 30:1087–1102MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Luisa Costa Sousa
    • 1
  • Catarina F. Castro
    • 1
  • Carlos Conceição António
    • 1
  1. 1.Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations