Metal Recovery, Separation and/or Pre-concentration

  • Cláudia Batista Lopes
  • Patrícia Ferreira Lito
  • Simão Pedro Cardoso
  • Eduarda Pereira
  • Armando Costa Duarte
  • Carlos Manuel SilvaEmail author


Metals are essential for the existence of life. Due to their chemical, physical, electrical and mechanical properties, they found a large number of applications, their use being intrinsically associated with the development of society. Besides their natural occurrence in the ecosystem, the application of metallic compounds in several industrial and agricultural sectors gives an inevitable rise to their release and dispersion into the environment. Accordingly, metallic ions must be separated from water and industrial water or effluents prior to final discharge whenever toxic or radioactive, or recovered in the case of valuable and precious species.

In this chapter, the ion exchange of metallic ions solutions with the aim to recover, separate or pre-concentrate them is reviewed and discussed. After a general introduction on the topic, the discussion is divided into several sections according to the nature of the ionic species: precious, radioactive, priority pollutants and other metals. The main parameters of the sorption process are generally analysed, such as the influence of pH, temperature and initial concentration on the equilibrium and kinetic performance, as well as sorbent regeneration details and modelling.


  1. 1.
    Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Bolton Jr., H. Gorby YA (1995) An overview of the bioremediation of inorganic contaminants. In: Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics. Battelle Press, ColumbusGoogle Scholar
  3. 3.
    Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, BerlinGoogle Scholar
  4. 4.
    Clark RB, Frid C, Attrill M (2001) Marine pollution, 5th edn. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Nriagu JO (2000) Series preface. In: Markert B, Friese K (eds) Trace metals in the environment. Elsevier, New YorkGoogle Scholar
  6. 6.
    Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106CrossRefGoogle Scholar
  7. 7.
    Taty-Costodes VC, Fauduet H, Porte C, Ho Y-S (2005) Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column. J Hazard Mater 123(1–3):135–144CrossRefGoogle Scholar
  8. 8.
    Baral SS, Das N, Ramulu TS, Sahoo SK, Das SN, Chaudhury GR (2009) Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J Hazard Mater 161(2–3):1427–1435CrossRefGoogle Scholar
  9. 9.
    Valderrama C, Arévalo JA, Casas I, Martínez M, Miralles N, Florido A (2010) Modelling of the Ni(II) removal from aqueous solutions onto grape stalk wastes in fixed-bed column. J Hazard Mater 174(1–3):144–150CrossRefGoogle Scholar
  10. 10.
    Tchobanoglous G, Burton FL, Stensel HD (2003) In: Eddy M (ed) Wastewater engineering: treatment and reuse. McGraw-Hill, BostonGoogle Scholar
  11. 11.
    Cruz-Olivares J, Pérez-Alonso C, Barrera-Díaz C et al (2010) Inside the removal of lead(II) from aqueous solutions by De-Oiled Allspice Husk in batch and continuous processes. J Hazard Mater 181:1095–1101CrossRefGoogle Scholar
  12. 12.
    Liu P, Liu G-F, Chen D-L, Cheng S-Y, Tang N (2009) Adsorption properties of Ag(I), Au(III), Pd(II) and Pt(IV) ions on commercial 717 anion-exchange resin. Trans Nonferrous Metals Soc China 19(6):1509–1513CrossRefGoogle Scholar
  13. 13.
    Hubicki Z, Leszczynska M (2005) Sorption of palladium (II) chloride complexes on weakly, intermediate and strongly basic anion exchangers. Desalination 175:227–236CrossRefGoogle Scholar
  14. 14.
    Gelin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal Environ 39:1–37CrossRefGoogle Scholar
  15. 15.
    Farrauto R, Liu Y, Ruettinger W, Ilinich O, Shore L, Giroux T (2007) Precious metal catalysts supported on ceramic and metal monolithic structures for the hydrogen economy. Cat Rev Sci Eng 49(2):141–196CrossRefGoogle Scholar
  16. 16.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  17. 17.
    Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K (2008) Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour Technol 99:3801–3809CrossRefGoogle Scholar
  18. 18.
    Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22CrossRefGoogle Scholar
  19. 19.
    Qu R, Sun C, Wang M, Ji C, Xu Q, Zhang Y, Wang C, Chen H, Yin P (2009) Adsorption of Au(III) from aqueous solution using cotton fiber/chitosan composite adsorbents. Hydrometallurgy 100:65–71.CrossRefGoogle Scholar
  20. 20.
    Patterson JW (1985) Industrial wastewater treatment technology, 2nd edn. Butterworth, BostonGoogle Scholar
  21. 21.
    Ajiwe VIE, Anyadiegwu IE (2000) Recovery of silver from industrial wastes, cassava solution effects. Sep Purif Technol 18:89–92CrossRefGoogle Scholar
  22. 22.
    Çoruh S, Senel G, Ergun ON (2010) A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal. J Hazard Mater 180:486–492CrossRefGoogle Scholar
  23. 23.
    Akgul M, Karabakan A, Acar O, Yurum Y (2006) Removal of silver (I) from aqueous solutions with clinoptilolite. Micropor Mesopor Mater 94:99–124CrossRefGoogle Scholar
  24. 24.
    Kononova ON, Leyman TA, Melnikov AM, Kashirin DM, Tselukovskaya MM (2010) Ion exchange recovery of platinum from chloride solutions. Hydrometallurgy 100:161–167CrossRefGoogle Scholar
  25. 25.
    Krishna MV, Ranjit M, Chandrasekaran K, Venkateswarlu G, Karunasagar D (2009) On-line preconcentration and recovery of palladium from waters using polyaniline (PANI) loaded in mini-column and determination by ICP-MS; elimination of spectral interferences. Talanta 79:1454–1463CrossRefGoogle Scholar
  26. 26.
    Shams K, Goodarzi F (2006) Improved and selective platinum recovery from spent a-alumina supported catalysts using pretreated anionic ion exchange resin. J Hazard Mater B 131:229–237CrossRefGoogle Scholar
  27. 27.
    Buslaeva TM (1999) Platinum group metals and their role in contemporary society. Sorosovskiy Obrazovetelny Zhurnal 11:45–49Google Scholar
  28. 28.
    Buyanov RA, Pakhomov NA (2001) Catalysts and processes of dehydrogenation of paraffins and olefins. Kinet Katal 42:72–85CrossRefGoogle Scholar
  29. 29.
    Hubickia Z, Wójcika G (2006) Studies of removal of platinum(IV) ion microquantities from the model solutions of aluminium, copper, iron, nickel and zinc chloride macroquantities on the anion exchanger Duolite S 37. J Hazard Mater B 136:770–775CrossRefGoogle Scholar
  30. 30.
    Xiong Y, Adhikari CR, Kawakita H, Ohto K, Inoue K, Harada H (2009) Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour Technol 100:4083–4089CrossRefGoogle Scholar
  31. 31.
    Neagu V, Paduraru C, Bunia I, Tofan L (2009) Platinum (IV) recovery from chloride solution by functionalized acrylic copolymers. J Environ Manage 91:270–276CrossRefGoogle Scholar
  32. 32.
    Cox M, Pichugin AA, El-Shafey EI, Appleton Q (2005) Sorption of precious metals onto chemically prepared carbon from flax shive. Hydrometallurgy 78(1–2):137–144CrossRefGoogle Scholar
  33. 33.
    Hubicki Z, Wójcik G (2006) Studies of removal of platinum(IV) ion microquantities from the model solutions of aluminium, copper, iron, nickel and zinc chloride macroquantities on the anion exchanger Duolite S 37. J Hazard Mater B 136:770–775CrossRefGoogle Scholar
  34. 34.
    Shams K, Beiggy MR, Shirazi AG (2004) Platinum recovery from a spent industrial dehydrogenation catalyst using cyanide leaching followed by ion exchange. Appl Catal Gen 258:227–234CrossRefGoogle Scholar
  35. 35.
    Belyaev AV (2003) Chemical-technological problems of platinum group metals during processing of exhausted nuclear fuel. Zhurnal Strukturnoy Khimii 44:39–47Google Scholar
  36. 36.
    Spektor OV, Ryumin AI, Pochekutova MG (1998) Methods for recovery of platinum group metals from spent catalysts. Tsvet Met 7:31–39Google Scholar
  37. 37.
    Brooks CS (1991) Metal recovery from industrial wastes. Lewis, ChelseaGoogle Scholar
  38. 38.
    Chang YC, Chen DH (2006) Recovery of gold(III) ions by a chitosan-coated magnetic nano-adsorbent. Gold Bull 39:98–102CrossRefGoogle Scholar
  39. 39.
    Gomes CP, Almeida MF, Loureiro JM (2001) Gold recovery with ion exchange used resins. Sep Purif Technol 24:35–57CrossRefGoogle Scholar
  40. 40.
    Zhao YZ (2006) The enrichment and separation of race gold, Pt and Pd from the ores based on co-precipitation. Gold 27:42–44Google Scholar
  41. 41.
    Alguacil FJ, Adeva P, Alonso M (2005) Processing of residual gold (III) solutions via ion exchange. Gold Bull 38:9–13CrossRefGoogle Scholar
  42. 42.
    Akita S, Yang L, Takeuchi H (1996) Solvent extraction of gold(III) from hydrochloric acid media by nonionic surfactants. Hydrometallurgy 43:37–46CrossRefGoogle Scholar
  43. 43.
    Hubicki Z, Leszczynska M, Lodyga B, Lodyga A (2006) Palladium(II) removal from chloride and chloride-nitrate solutions by chelating ion-exchangers containing N-donor atoms. Miner Eng 19(13):1341–1347CrossRefGoogle Scholar
  44. 44.
    Weng CH, Huang CP (2004) Adsorption characteristics of Zn (II) from dilute aque- ous solution by fly ash. Colloids Surf A: Physicochem Eng Aspects 247:137–143CrossRefGoogle Scholar
  45. 45.
    Annadurai G, Juang RS, Lae DJ (2002) Adsorption heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190Google Scholar
  46. 46.
    Çay S, Uyanık A, Özasık A (2004) Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste. Sep Purif Technol 38:273–280CrossRefGoogle Scholar
  47. 47.
    Srivastava VC, Mall ID, Mishra IM (2007) Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem Eng J 132:267–278CrossRefGoogle Scholar
  48. 48.
    Chassary P, Vincent T, Marcano JS, Macaskiec LE, Guibal E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147CrossRefGoogle Scholar
  49. 49.
    Cortina JL, Meinhardt E, Roijals O, Marti V (1998) Modification and preparation of polymeric adsorbents for precious-metal extraction in hydrometallurgical processes. React Funct Polym 36(2):149–165CrossRefGoogle Scholar
  50. 50.
    Zhang HG, Dreisinger DB (2002) The adsorption of gold and copper onto ion-exchange resins from ammoniacal thiosulfate solutions. Hydrometallurgy 66:67–76CrossRefGoogle Scholar
  51. 51.
    Gallagher NP, Hendrix JL, Milosavljevic EB, Nelson JH, Solujic L (1990) Affinity of activated carbon towards some gold(I) complexes. Hydrometallurgy 25:305–316CrossRefGoogle Scholar
  52. 52.
    Zhang HG, Dreisinger DB (2004) The recovery of gold from ammoniacal thiosulfate solutions containing copper using ion exchange resin columns. Hydrometallurgy 72:225–234CrossRefGoogle Scholar
  53. 53.
    Sanchéz JM, Hidalgo M, Salvado V (2000) The separation of Au(III) and Pd(II) in hydrochloric acid solutions by strong anion type II exchange resins: the effect of counter ion concentration and temperature. Solvent Extr Ion Exch 18:1199–1217CrossRefGoogle Scholar
  54. 54.
    Hubicki Z, Wołowicz A (2009) Adsorption of palladium(II) from chloride solutions on Amberlyst A 29 and Amberlyst A 21 resins. Hydrometallurgy 96:159–165CrossRefGoogle Scholar
  55. 55.
    Kovacheva P, Djingova R (2002) Ion-exchange method for separation and concentration of platinum and palladium for analysis of environmental samples by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 464:7–13CrossRefGoogle Scholar
  56. 56.
    Topp K-D, Grote M (1996) Synthesis and characterization of a 1,2,4,5-tetrazine-modified ion-exchange resin. React Funct Polym 31:117–136CrossRefGoogle Scholar
  57. 57.
    Parodi A, Vincent T, Pilsniak M et al (2008) Palladium and platinum binding on an imidazol containing resin. Hydrometallurgy 92:1–10CrossRefGoogle Scholar
  58. 58.
    Çelik Z, Gülfen M, Aydın AO (2010) Synthesis of a novel dithiooxamide–formaldehyde resin and its application to the adsorption and separation of silver ions. J Hazard Mater 174:556–562CrossRefGoogle Scholar
  59. 59.
    Dubois MA, Dozol JF, Nicotra C et al (1995) Pyrolysis and incineration of cationic and anionic ion-exchange resins – identification of volatile degradation compounds. J Anal Appl Pyrolysis 31:129–140CrossRefGoogle Scholar
  60. 60.
    Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935CrossRefGoogle Scholar
  61. 61.
    Kapoor A, Viraraghavan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195Google Scholar
  62. 62.
    Coleman NJ, Bishop AH, Booth SE, Nicholson JW (2009) Ag+ and Zn2+ - exchange kinetics and antimicrobial properties of 11 Å tobermorites. J Eur Ceram Soc 290:1109–1117CrossRefGoogle Scholar
  63. 63.
    Rocha J, Anderson MW (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur J Inorg Chem 2000:801–818CrossRefGoogle Scholar
  64. 64.
    Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243CrossRefGoogle Scholar
  65. 65.
    Lihareva N, Dimova L, Petrov O, Tzvetanova Y (2010) Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes, Bulgaria. Micropor Mesopor Mater 130:32–37CrossRefGoogle Scholar
  66. 66.
    Sharma P, Tomar R (2008) Synthesis and application of an analogue of mesolite for the removal of uranium(VI), thorium(IV), and europium(III) from aqueous waste. Micropor Mesopor Mater 116:641–652CrossRefGoogle Scholar
  67. 67.
    Al-Attar L, Dyer A, Paajanenb A, Harjulab R (2003) Purification of nuclear wastes by novel inorganic ion exchangers. J Mater Chem 13:2969–2974CrossRefGoogle Scholar
  68. 68.
    Riegel M, Tokmachev M, Hoell WH (2008) Kinetics of uranium sorption onto weakly basic anion exchangers. React Funct Polym 68:1072–1080CrossRefGoogle Scholar
  69. 69.
    Tykva R, Din KS, Pavel CC, Cecal A, Popa K (2009) Contribution to the external surface of a titanium-rich sand (Abou-Khashaba, Egypt) in the uranium uptake processes. J Radioanal Nucl Chem 279(3):811–816CrossRefGoogle Scholar
  70. 70.
    Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium(IV) prior to analytical determination. Talanta 68:1047–1064CrossRefGoogle Scholar
  71. 71.
    Kalina M, Wheelerb WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177CrossRefGoogle Scholar
  72. 72.
    Kadous A, Didi MA, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris(methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284:431–438CrossRefGoogle Scholar
  73. 73.
    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441CrossRefGoogle Scholar
  74. 74.
    Maheswari MA, Subramanian MS (2004) Selective enrichment of U(VI), Th(IV) and La(III) from high acidic streams using a new chelating ion-exchange polymeric matrix. Talanta 64:202–209CrossRefGoogle Scholar
  75. 75.
    Donia AM, Atia AA, Moussa EMM, El-Sherif AM, El-Magied MOA (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189CrossRefGoogle Scholar
  76. 76.
    Eisenbud M, Gesell T (1997) Environmental radioactivity: from natural, industrial, and military sources, 4th edn. Academic, New YorkGoogle Scholar
  77. 77.
    Clifford D, Zhang ZH (1994) Modifying ion-exchange for combined removal of uranium and radium. J Am Water Works Assoc 86:214–227Google Scholar
  78. 78.
    Anirudhan TS, Radhakrishnan PG (2009) Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100:250–257CrossRefGoogle Scholar
  79. 79.
    Van Horn JD, Huang H (2006) Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord Chem Rev 250:765–775CrossRefGoogle Scholar
  80. 80.
    Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101:267–276CrossRefGoogle Scholar
  81. 81.
    van Leeuwen FWV, Beijleveld H, Miermans CJH, Huskens J, Verboom W, Reinhoudt DN (2005) Ionizable (Thia)calix[4]crowns as highly selective 226Ra2+ Ionophores. Analytica Chem 77:4611–4617CrossRefGoogle Scholar
  82. 82.
    Kathren RL (1998) NORM sources and their origins. Appl Radiat Isotop 49:149–168CrossRefGoogle Scholar
  83. 83.
    van Leeuwen FWB, Verboom W, Reinhoudt DN (2005) Selective extraction of naturally occurring radioactive Ra2+. Chem Soc Rev 34(9):753–761CrossRefGoogle Scholar
  84. 84.
    Melnikov P, Zanoni LZ (2010) Clinical effects of cesium intake. Biol Trace Elem Res 135:1–9CrossRefGoogle Scholar
  85. 85.
    Cornell RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171:483–500CrossRefGoogle Scholar
  86. 86.
    Cseke JL, Kaufman PB, Polila GK, Tsai C-J (2004) Handbook of molecular and cellular methods in biology and medicine. 2nd edn. CRC Press, Boca Raton.Google Scholar
  87. 87.
    Cortés-Martinéz R, Olguin MT, Solache-Rios M (2010) Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems. Desalination 258:164–170CrossRefGoogle Scholar
  88. 88.
    Wang L, Feng M, Liu CX, Zhao YS, Li SQ, Wang H, Yan L, Tian G, Li SJ (2009) Supporting of potassium copper hexacyanoferrate on porous activated carbon substrate for cesium separation. Sep Sci Technol 44(16):4023–4035CrossRefGoogle Scholar
  89. 89.
    Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235:306–318CrossRefGoogle Scholar
  90. 90.
    Roskill O (1992) The economics of strontium, 6th edn. Roskill Information Service Ltd, LondonGoogle Scholar
  91. 91.
    Puziy AM, Kartel NT, Bortun LN, Strelko VV (1996) Adsorbent for strontium adsorption from water solutions. Ukrainian Patene 12352Google Scholar
  92. 92.
    Cho Y, Komarneni S (2009) Cation exchange equilibria of cesium and strontium with K-depleted biotite and muscovite. Appl Clay Sci 44:15–20CrossRefGoogle Scholar
  93. 93.
    Ahmadpoura A, Zabihia M, Tahmasbib M et al (2010) Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. J Hazard Mater 182:552–556CrossRefGoogle Scholar
  94. 94.
    Behrens EA, Clearfield A (1997) Titanium silicates, M3HTi4O4(SiO4)3.4H2O (M = Na+, K+), with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions. Micropor Mater 11(1–2):65–75Google Scholar
  95. 95.
    Osmanliouglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137:332–335CrossRefGoogle Scholar
  96. 96.
    El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151(2–3):432–445CrossRefGoogle Scholar
  97. 97.
    Zachara JM, Smith SC, Liu CX, McKinley JP, Serne RJ, Gassman PL (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta 66(2):193–211CrossRefGoogle Scholar
  98. 98.
    Luca V, Hanna JV, Smith ME, James M, Mitchell DRG, Bartlett JR (2002) Nb-substitution and Cs+ ion-exchange in the titanosilicate sitinakite. Micropor Mesopor Mater 55(1):1–13CrossRefGoogle Scholar
  99. 99.
    Sylvester P, Clearfield A (1998) The removal of strontium and cesium from simulated hanford groundwater using inorganic ion exchange materials. Solvent Extr Ion Exch 16:1527–1539CrossRefGoogle Scholar
  100. 100.
    Ahmadpour A, Zabihi M, Tahmasbi M, Bastami TB (2010) Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. J Hazard Mater 182:552–556CrossRefGoogle Scholar
  101. 101.
    Pan J, Zou X, Yan Y, Wang X, Guan W, Han J, Wu X (2010) An ion-imprinted polymer based on palygorskite as a sacrificial support for selective removal of strontium(II). Appl Clay Sci 50:260–265CrossRefGoogle Scholar
  102. 102.
    Sureda R, Martínez-Lladó X, Miquel Rovira M, Pablo J, Casas I, Giménez J (2010) Sorption of strontium on uranyl peroxide: Implications for a high-level nuclear waste repository. J Hazard Mater 181:881–885Google Scholar
  103. 103.
    Donat R (2009) The removal of uranium (VI) from aqueous solutions onto natural sepiolite. J Chem Thermodynam 41:829–835CrossRefGoogle Scholar
  104. 104.
    Atun G, Ortaboy S (2009) Adsorptive removal of uranium from water by sulfonated phenol-formaldehyde resin. J Appl Polym Sci 114:3793–3801CrossRefGoogle Scholar
  105. 105.
    Zou WH, Zhao L, Han RP (2009) Removal of uranium (VI) by fixed bed Ion-exchange column using natural zeolite coated with manganese oxide. Chinese J Chem Eng 17:585–593CrossRefGoogle Scholar
  106. 106.
    Mellah A, Silem A, Boualia A, Kada R (1992) Adsorption of organic matter from a wet phosphoric acid using activated carbon: equilibrium study. Chem Eng Process 31(3):191–194CrossRefGoogle Scholar
  107. 107.
    Qadeer R, Hanif J, Khan M et al (1995) Uptake of uranium ions by molecular sieve. Radiochimica Acta 68:197–201Google Scholar
  108. 108.
    Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175:393–398CrossRefGoogle Scholar
  109. 109.
    Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousis I (1995) Thorium and uranium uptake by natural zeolitic materials. Sci Total Environ 173(1–6):237–246CrossRefGoogle Scholar
  110. 110.
    Barton CS, Stewart DI, Morris KS, Bryant DE (2004) Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB. J Hazar Mater 116(3):191–204CrossRefGoogle Scholar
  111. 111.
    Gu BH, Ku YK, Brown GM (2005) Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ Sci Technol 39:901–907CrossRefGoogle Scholar
  112. 112.
    Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange – column experiments. Miner Eng 18:1337–1340CrossRefGoogle Scholar
  113. 113.
    Ladeira ACQ, Goncalves CR (2007) Influence of anionic species on uranium separation from acid mine water using strong base resins. J Hazard Mater 148:499–504CrossRefGoogle Scholar
  114. 114.
    Hasan S, Ghosh TK, Viswanath DS, Loyalka SK, Sengupta B (2007) Preparation and evaluation of fullers earth beads for removal of cesium from waste streams. Sep Sci Technol 42:717–738CrossRefGoogle Scholar
  115. 115.
    Atia AA, Donia AM, El-Enein SA, Yousif AM (2007) Effect of chain length of aliphatic amines immobilized on a magnetic glycidyl methacrylate resin towards the uptake behavior of Hg(II) from aqueous solutions. Sep Sci Technol 42(2):403–420CrossRefGoogle Scholar
  116. 116.
    Phillips DH, Gu B, Watson DB, Parmele CS (2008) Uranium removal from contaminated groundwater by synthetic resins. Water Res 42(1–2):260–268CrossRefGoogle Scholar
  117. 117.
    Kilislioglu A, Bilgin B (2003) Thermodynamic and kinetic investigations of uranium adsorption on Amberlite IR-118H resin. Appl Radiat Isot 58:155–160CrossRefGoogle Scholar
  118. 118.
    Chanda M, Rempel GL (1995) Polyethyleneimine gel-coat on silica. High uranium capacity and fast kinetics of gel-coated resin. React Polym 25:25–36CrossRefGoogle Scholar
  119. 119.
    Moon DS, Burnett WC, Nour S, Horwitz P, Bond A (2003) Preconcentration of radium isotopes from natural waters using MnO2 resin. Appl Radiat Isot 59:255–262CrossRefGoogle Scholar
  120. 120.
    Clifford DA, Zhang Z (1995) Removing uranium and radium from groundwater by ion exchange resins. In: Sengupta AK (ed) Ion exchange technology. Technomic, LancasterGoogle Scholar
  121. 121.
    Gu B, Ku Y-K, Jardine PM (2004) Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ Sci Technol 38:3184–3188CrossRefGoogle Scholar
  122. 122.
    Bortun AI, Bortun LN, Clearfield A (1997) Evaluation of synthetic inorganic ion exchangers for cesium and strontium removal from contaminated groundwater and wastewater. Solvent Extr Ion Exch 15:909–929CrossRefGoogle Scholar
  123. 123.
    Clearfield A (1995) Inorganic-ion exchangers – a technology ripe for development. Ind Eng Chem Res 34:2865–2872Google Scholar
  124. 124.
    Harjula R, Lehto J, Paajanen A, Tusa E, Yarnell P (2004) Use inorganic ion exchange materials as precoat filters for nuclear waste effluent treatment. React Funct Polym 60:85–95CrossRefGoogle Scholar
  125. 125.
    Tachi Y, Shibutani T, Sato H, Yui M (2001) Experimental and modeling studies on sorption and diffusion of radium in bentonite. J Contam Hydrol 47:171–186CrossRefGoogle Scholar
  126. 126.
    Liu CX, Zachara JM, Qafoku O, Smith SC (2003) Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, USA. Environ Sci Technol 37(12):2640–2645CrossRefGoogle Scholar
  127. 127.
    Guerra DL, Leidens VL, Viana RR, Airoldi C (2010) Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions. J Hazard Mater 180(1–3):683–692CrossRefGoogle Scholar
  128. 128.
    Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solvent Extr Ion Exch 18:655–678CrossRefGoogle Scholar
  129. 129.
    Koivula R, Harjula R, Lehto J (2006) Selective removal of radionuclides from nuclear waste effluents using inorganic ion exchangers. In: Loureiro JM, Kartel MT (eds) Combined and hybrid adsorbents. Springer, New YorkGoogle Scholar
  130. 130.
    Manos MJ, Kanatzidis MG (2009) Highly efficient and rapid Cs+ uptake by the layered metal Sulfide K2xMnxSn3-xS6 (KMS-1). J Am Chem Soc 131(18):6599–6607CrossRefGoogle Scholar
  131. 131.
    Al-Haj AA, El-Bishtawi R (1997) Removal of lead and nickel ions using zeolite tuff. J Chem Technol Biotechnol 69:27–34CrossRefGoogle Scholar
  132. 132.
    Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172(1):416–422CrossRefGoogle Scholar
  133. 133.
    Dyer A, Pillinger M, Amin S (1999) Ion exchange of caesium and strontium on a titanosilicate analogue of the mineral pharmacosiderite. J Mater Chem 9:2481–2487CrossRefGoogle Scholar
  134. 134.
    Liang Z, Ni J (2009) Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. J Hazard Mater 166:52–60CrossRefGoogle Scholar
  135. 135.
    Goñi S, Guerrero A, Lorenzo MP (2006) Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium. J Hazard Mater 137:1608–1617CrossRefGoogle Scholar
  136. 136.
    Adabbo M, Caputo D, de Gennaro B, Pansini M, Colella C (1999) Ion exchange selectivity of phillipsite for Cs and Sr as a function of framework composition. Micropor Mesopor Mater 28(2):315–324CrossRefGoogle Scholar
  137. 137.
    Abusafa A, Yucel H (2002) Removal of Cs-137 from aqueous solutions using different cationic forms of a natural zeolite: clinoptilolite. Sep Purif Technol 28:103–116CrossRefGoogle Scholar
  138. 138.
    Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143CrossRefGoogle Scholar
  139. 139.
    Lopes CB, Otero M, Coimbra J, Pereira E, Rocha J, Lin Z, Duarte A (2007) Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Micropor Mesopor Mater 103(1–3):325–332CrossRefGoogle Scholar
  140. Jurado-Vargas M, OIguln MT, Ordóñez-Regil E, Jiménez-Reyes M (1997) Ion exchange of radium and barium in zeolites. J Radioanal Nucl Chem 218:153–156Google Scholar
  141. 141.
    Olguín MT, Solache-Ríos M, Acosta D, Bosch P, Bulbulian S (1999) Uranium sorption in zeolite X: the valence effect. Micropor Mesopor Mater 28:377–385CrossRefGoogle Scholar
  142. 142.
    Gu BX, Wang LM, Ewing RC (2000) The effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY. J Nucl Mater 278:64–72CrossRefGoogle Scholar
  143. 143.
    El-Kamash AM, El-Naggar MR, El-Dessouky MI (2006) Immobilization of cesium and strontium radionuclides in zeolite-cement blends. J Hazard Mater 136:310–316CrossRefGoogle Scholar
  144. 144.
    Celestian AJ, Clearfield A (2007) The origin of ion exchange selectivity in a porous framework titanium silicate. J Mater Chem 17:4839–4842CrossRefGoogle Scholar
  145. 145.
    Moller T, Harjula R, Lehto J (2002) Ion exchange of Sr-85, Cs-134 and Co-57 in sodium titanosilicate and the effect of crystallinity on selectivity. Sep Purif Technol 28:13–23CrossRefGoogle Scholar
  146. 146.
    Tripathi A, Medvedev DG, Nyman M, Clearfield A (2003) Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology. J Solid State Chem 175(1):72–83CrossRefGoogle Scholar
  147. 147.
    Psareva TS, Zakutevskyy OI, Chubar NI, Strelko VV, Shaposhnikova TO, Carvalho JR, Correia MJN (2005) Uranium sorption on cork biomass. Colloids and Surfaces A: Physicochem Eng Aspects 252:231–236CrossRefGoogle Scholar
  148. 148.
    Økland TE, Wilhelmsen E, Solevåg Ø (2005) A study of the priority substances of the water framework directive, monitoring and need for screening. Bergfald & Co, NorwayGoogle Scholar
  149. 149.
    WHO (1996) Health criteria and other supporting information. In: Guidelines for drinking-water quality, vol 2, 2nd edn. World Health Organization, GenevaGoogle Scholar
  150. 150.
    Otero M, Lopes CB, Coimbra J, Ferreira TR, Silva CM, Lin Z, Rocha J, Pereira E, Duarte AC (2009) Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-4 titanosilicate. Desalination 249(2):742–747CrossRefGoogle Scholar
  151. 151.
    Rivas BL, Maturana HA, Luna M (1999) Selective binding of mercury ions by poly(4-vinylpyridine) hydrochloride resin. J Appl Polym Sci 74:1557–1562CrossRefGoogle Scholar
  152. 152.
    Bessbousse H, Rhlalou T, Verchiere J-F, Lebrun L (2009) Novel metal-complexing membrane containing poly(4-vinylpyridine) for removal of Hg(II) from aqueous solution. Vol. 113. American Chemical Society, Washington, DCGoogle Scholar
  153. 153.
    Monteagudo JM, Ortiz MJ (2000) Removal of inorganic mercury from mine waste water by ion exchange. J Chem Technol Biotechnol 75:767–772CrossRefGoogle Scholar
  154. 154.
    Kocaoba S (2007) Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. J Hazard Mater 147:488–496CrossRefGoogle Scholar
  155. 155.
    Saha B, Iglesias M, dimming IW, Streat M (2000) Sorption of trace heavy metals by thiol containing chelating resins. Solvent Extr Ion Exch 18(1):133–167CrossRefGoogle Scholar
  156. 156.
    Sharaf MA, Sayed SA, Younis AA, Farag AB, Arida HA (2007) Removal of trace contaminants from water using new chelating resins. Anal Lett 40(18):3443–3456CrossRefGoogle Scholar
  157. 157.
    Pagano M, Petruzzelli D, Tiravanti G, Passino R (2000) Pb/Fe Separation and recovery from automobile battery wateeasters by selective ion exchange. Solvent Extr Ion Exch 18(2):387–399CrossRefGoogle Scholar
  158. 158.
    Valverde JL, de Lucas A, Carmona M, González M, Rodríguez JF (2004) Equilibrium data of the exchange of Cu2+, Cd2+ and Zn2+ ions for H+ on the cationic exchanger Lewatit TP-207. J Chem Technol Biotechnol 79(12):1371–1375CrossRefGoogle Scholar
  159. 159.
    Atia AA, Donia AM, Elwakeel KZ (2005) Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups. React Funct Polym 65:267–275CrossRefGoogle Scholar
  160. 160.
    Singh DK, Srivastava M (2005) Selective uptake and recovery of cadmium (II) by microcapsule containing chelating resin. Sep Purif Technol 45:1–7CrossRefGoogle Scholar
  161. 161.
    Badawy NA, El-Bayaa AA, Abdel-Aal AY, Garamon SE (2009) Chromatographic separations and recovery of lead ions from a synthetic binary mixtures of some heavy metal using cation exchange resin. J Hazard Mater 166(2–3):1266–1271CrossRefGoogle Scholar
  162. 162.
    Pohl P, Prusisz B (2004) Pre-concentration of Cd, Co, Cu, Ni and Zn using different off-line ion exchange procedures followed by the inductively coupled plasma atomic emission spectrometric detection. Anal Chim Acta 502:83–90CrossRefGoogle Scholar
  163. 163.
    Liu RX, Zhang BW, Tang HX (1999) Synthesis and characterization of poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibre. React Funct Polym 39(1):71–81CrossRefGoogle Scholar
  164. 164.
    Denizli A, Kesenci K, Arica Y, Piskin E (2000) Dithiocarbamate-incorporated monosize polystyrene microspheres for selective removal of mercury ions. React Funct Polym 44(3):235–243CrossRefGoogle Scholar
  165. 165.
    Manju GN, Anoop Krishnan K, Vinod VP, Anirudhan TS (2002) An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron(III) oxide. J Hazard Mater 91(1–3):221–238CrossRefGoogle Scholar
  166. 166.
    Nam KH, Gomez-Salazar S, Tavlarides LL (2003) Mercury(II) adsorption from wastewaters using a thiol functional adsorbent. Ind Eng Chem Res 42:1955–1964CrossRefGoogle Scholar
  167. 167.
    Osman MM, Kholeif SA, Abou Al-Maaty NA, Mahmoud ME (2003) Metal sorption, solid phase extraction and preconcentration properties of two silica gel phases chemically modified with 2-hydroxy-1-naphthaldehyde. Microchimica Acta 143(1):25–31CrossRefGoogle Scholar
  168. 168.
    Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57:13–21CrossRefGoogle Scholar
  169. 169.
    Abderrahim O, Didi MA, Moreau B, Villemin D (2006) A new sorbent for selective Separation of metal: polyethylenimine methylenephosphonic acid. Solvent Extract Ion Exch 24(6):943–955CrossRefGoogle Scholar
  170. 170.
    Khan A, Mahmood F, Khokhar MY, Ahmed S (2006) Functionalized sol-gel material for extraction of mercury (II). React Funct Polym 66(10):1014–1020CrossRefGoogle Scholar
  171. 171.
    Lopes CB, Lito PF, Otero M, Lin Z, Rocha J, Silva CM, Pereira E, Duarte AC (2008) Mercury removal with titanosilicate ETS-4: Batch experiments and modelling. Micropor Mesopor Mater 115(1–2):98–105CrossRefGoogle Scholar
  172. 172.
    Barreira LD, Lito PF, Antunes BM, Otero M, Lin Z, Rocha J, Pereira E, Duarte AC, Silva CM (2009) Effect of pH on cadmium (II) removal from aqueous solution using titanosilicate ETS-4. Chem Eng J 155(3):728–735CrossRefGoogle Scholar
  173. 173.
    Camarinha ED, Lito PF, Antunes BM, Otero M, Lin Z, Rocha J, Pereira E, Duarte AC, Silva CM (2009) Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-10. Chem Eng J 155(1–2):108–114CrossRefGoogle Scholar
  174. 174.
    Ferreira TR, Lopes CB, Lito PF, Otero M, Lin Z, Rocha J, Pereira E, Silva CM, Duarte A (2009) Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem Eng J 147(2–3):173–179CrossRefGoogle Scholar
  175. 175.
    Liu J, Li T, Hu K, Shao G (2009) Preparation and adsorption performances of novel negatively charged hybrid materials. J Appl Polym Sci 112(4):2179–2184CrossRefGoogle Scholar
  176. 176.
    Lopes CB, Otero M, Lin Z, Silva CM, Rocha J, Pereira E, Duarte AC (2009) Removal of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate -Kinetic and equilibrium studies. Chem Eng J 151(1–3):247–254CrossRefGoogle Scholar
  177. 177.
    Alam Z, Inamuddin NSA (2010) Synthesis and characterization of a thermally stable strongly acidic Cd(II) ion selective composite cation-exchanger: polyaniline Ce(IV) molybdate. Desalination 250:515–522CrossRefGoogle Scholar
  178. 178.
    Lopes CB, Otero M, Lin Z, Silva CM, Pereira E, Rocha J, Duarte AC (2010) Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. J Hazard Mater 175(1–3):439–444CrossRefGoogle Scholar
  179. 179.
    Mahmoud ME, Hafez OF, Osman MM, Elmelegy E (2010) Implementation of hybrid inorganic/organic adsorbents for removal and preconcentration of heavy metals from industrial waste and drinking waters. Sep Sci Technol 45(9):1302–1312CrossRefGoogle Scholar
  180. 180.
    Mandal B, Ghosh N (2010) Extraction chromatographic method of preconcentration and separation of lead (II) with high molecular mass liquid cation exchanger. Desalination 250:506–514CrossRefGoogle Scholar
  181. 181.
    Chojnacki A, Chojnacka K, Hoffmann J, Górecki H (2004) The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Miner Eng 17(7–8):933–937CrossRefGoogle Scholar
  182. 182.
    Mondale KD, Carland RM, Aplan FF (1995) The comparative ion exchange capacities of natural sedimentary and synthetic zeolites. Miner Eng 8:535–548CrossRefGoogle Scholar
  183. 183.
    Melamed R, da Luz AB (2006) Efficiency of industrial minerals on the removal of mercury species from liquid effluents. Sci Total Environ 368:403–406CrossRefGoogle Scholar
  184. 184.
    Payne KB, Abdel-Fattah TM (2005) Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2275–2291CrossRefGoogle Scholar
  185. 185.
    Peric J, Trgo M, Vukojevic Medvidovic N (2004) Removal of zinc, copper and lead by natural zeolite–a comparison of adsorption isotherms. Water Res 38:1893–1899CrossRefGoogle Scholar
  186. 186.
    Mousavi HZ, Asghari A (2009) Removal of heavy metal in wastewater by Semnan natural zeolites. Asian J Chem 21:2881–2886Google Scholar
  187. 187.
    Lv L, Hor MP, Su F, Zhao XS (2005) Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10. J Colloid Interface Science 287(1):178–184CrossRefGoogle Scholar
  188. 188.
    Lv L, Wang K, Zhao XS (2007) Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column. J Colloid Interface Sci 305(2):218–225CrossRefGoogle Scholar
  189. 189.
    Lv L, Zhang Y, Wang K, Ray AK, Zhao XS (2008) Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent. J Colloid Interface Sci 325(1):57–63CrossRefGoogle Scholar
  190. 190.
    Choi JH, Kim SD, Noh SH, Oh SJ, Kim WJ (2006) Adsorption behaviors of nano-sized ETS-10 and Al-substituted-ETAS-10 in removing heavy metal ions, Pb2+ and Cd2+. Micropor Mesopor Mater 87(3):163–169CrossRefGoogle Scholar
  191. 191.
    Hristodor C, Copcia V, Lutic D, Popovici E (2010) Thermodynamics and kinetics of Pb(II) and Hg(II) ions removal from aqueous solution by romanian clays. Rev Chim 61(3):285–289Google Scholar
  192. 192.
    Yang J-S, Lee JY, Park Y-T, Baek K, Choi J (2010) Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from aqueous solutions by natural muscovite. Sep Sci Technol 45(6):814–823CrossRefGoogle Scholar
  193. 193.
    Rocha J, Anderson Michael W (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur J Inorg Chem 2000:801–818CrossRefGoogle Scholar
  194. 194.
    Tuzen M, Sari A, Mendil D, Soylak M (2009) Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium studies. J Hazard Mater 169(1–3):263–270CrossRefGoogle Scholar
  195. 195.
    Xie JZ, Chang HL, Kilbane JJ (1996) Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents. Bioresour Technol 57:127–136CrossRefGoogle Scholar
  196. 196.
    Zeroual Y, Moutaouakkil A, Zohra Dzairi F, Talbi M, Ung Chung P, Lee K, Blaghen M (2003) Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresour Technol 90(3):349–351CrossRefGoogle Scholar
  197. 197.
    Tuzun I, Bayramoglu G, YalçIn E, Basaran G, Çelik G, ArIca MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manage 77(2):85–92CrossRefGoogle Scholar
  198. 198.
    Lodeiro P, Herrero R, Sastre de Vicente ME (2006) Batch desorption studies and multiple sorption-regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum. J Hazard Mater 137:1649–1655CrossRefGoogle Scholar
  199. 199.
    Naja G, Volesky B (2006) Multi-metal biosorption in a fixed-bed flow-through column. Colloids Surf A Physicochem Eng Asp 281:194–201CrossRefGoogle Scholar
  200. 200.
    Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353CrossRefGoogle Scholar
  201. 201.
    Huang L-Z, Zeng G-M, Huang D-L, Li L-F, Du C-Y, Zhang L (2010) Biosorption of cadmium(II) from aqueous solution onto Hydrilla verticillata. Environ Earth Sci 60(8):1683–1691CrossRefGoogle Scholar
  202. 202.
    Gaballah I, Kilbertus G (1998) Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. J Geochem Explor 62:241–286CrossRefGoogle Scholar
  203. 203.
    Lloyd-Jones PJ, Rangel-Mendez JR, Streat M (2004) Mercury sorption from aqueous solution by chelating ion exchange resins, activated carbon and a biosorbent. Process Saf Environ Prot 82:301–311CrossRefGoogle Scholar
  204. 204.
    Ghodbane I, Hamdaoui O (2008) Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. J Hazard Mater 160:301–309CrossRefGoogle Scholar
  205. 205.
    Sari A, Tuzen M (2009) Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies. J Hazard Mater 171:500–507CrossRefGoogle Scholar
  206. 206.
    Reddy DHK, Seshaiah K, Reddy AVR, Rao MM, Wang MC (2010) Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: Equilibrium and kinetic studies. J Hazard Mater 174(1–3):831–838CrossRefGoogle Scholar
  207. 207.
    López A, Lázaro N, Priego JM, Marqués AM (2000) Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24(2):146–151CrossRefGoogle Scholar
  208. 208.
    Pagnanelli F, Toro L, Vegliò F (2002) Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Manage (Oxford) 22:901–907CrossRefGoogle Scholar
  209. 209.
    Farajzadeh MA, Monji AB (2004) Adsorption characteristics of wheat bran towards heavy metal cations. Sep Purif Technol 38:197–207CrossRefGoogle Scholar
  210. 210.
    Minamisawa M, Minamisawa H, Yoshida S, Takai N (2004) Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem 52(18):5606–5611CrossRefGoogle Scholar
  211. 211.
    Anirudhan TS, Divya L, Ramachandran M (2008) Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J Hazard Mater 157:620–627CrossRefGoogle Scholar
  212. 212.
    Krishnani KK, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153(3):1222–1234CrossRefGoogle Scholar
  213. 213.
    El-Shafey EI (2010) Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J Hazard Mater 175:319–327CrossRefGoogle Scholar
  214. 214.
    Sousa FW, Oliveira AG, Ribeiro JP, Rosa MF, Keukeleire D, Nascimento RF (2010) Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J Environ Manag 91(8):1634–1640CrossRefGoogle Scholar
  215. 215.
    Gamage A, Shahidi F (2007) Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem 104:989–996CrossRefGoogle Scholar
  216. 216.
    Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+. J Hazard Mater 151(2–3):380–388CrossRefGoogle Scholar
  217. 217.
    Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226CrossRefGoogle Scholar
  218. 218.
    Miretzky P, Cirelli AF (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23CrossRefGoogle Scholar
  219. 219.
    Zhai Y, Duan Se, He Q, Yang X, Han Q (2010) Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide. Microchimica Acta 169(3):353–360CrossRefGoogle Scholar
  220. 220.
    Zhang Y, Li Q, Sun L, Tang R, Zhai J (2010) High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite. J Hazard Mater 175(1–3):404–409CrossRefGoogle Scholar
  221. 221.
    Kaur A, Gupta U (2008) Preconcentration procedure using 1-(2-Pyridylazo)-2-napthol anchored to silica nanoparticle for the analysis of cadmium in different samples. E-J Chem 5:930–939CrossRefGoogle Scholar
  222. 222.
    Arief VO, Trilestari K, Sunarso J, Ismadjl S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean 36(12):937–962Google Scholar
  223. 223.
    Khambhaty Y, Mody K, Basha S, Jha B (2008) Hg(II) removal from aqueous solution by dead fungal biomass of marine Aspergillus niger: Kinetic Studies. Sep Sci Technol 43(5):1221–1238CrossRefGoogle Scholar
  224. 224.
    Nieboer E, McBryde AE (1973) Free-energy relationships in coordination chemistry. III. A comprehensive index to complex stability. Can J Chem 51:2512–2524CrossRefGoogle Scholar
  225. 225.
    Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1:3–26CrossRefGoogle Scholar
  226. 226.
    Brady JM, Tobin JM (1995) Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme Microb Technol 17:791–796CrossRefGoogle Scholar
  227. 227.
    Pagano M, Petruzzelli D, Tiravanti G, Passino R (2000) Pb/Fe Separation and recovery from automobile battery wateeasters by selective ion exchange. Solvent Extr Ion Exch 18(2):387–399CrossRefGoogle Scholar
  228. 228.
    Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Bioresour Technol 101(14):5043–5053CrossRefGoogle Scholar
  229. 229.
    Bhattacharya AK, Venkobachar C (1984) Removal of cadmium (II) by low cost adsorbents. J Environ Eng 110:110–122CrossRefGoogle Scholar
  230. 230.
    Yalçin S, Apak R, Hizal J, Afsar H (2001) Recovery of copper (II) and chromium (III, VI) from electroplating-industry wastewater by ion exchange. Sep Sci technol 36(10):2181–2196CrossRefGoogle Scholar
  231. 231.
    Deepatana A, Valix M (2006) Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. J Hazard Mater 137:925–933CrossRefGoogle Scholar
  232. 232.
    Juang R-S, Kao H-C, Liu F-Y (2006) Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands. J Hazard Mater 128:53–59CrossRefGoogle Scholar
  233. 233.
    Pohl P, Prusisz B (2006) Fractionation of calcium and magnesium in honeys, juices and tea infusions by ion exchange and flame atomic absorption spectrometry. Talanta 69:1227–1233CrossRefGoogle Scholar
  234. 234.
    Chen J-H, Huang C-E (2007) Selective separation of Cu and Zn in the citric acid leachate of industrial printed wiring board sludge by D2EHPA-modified Amberlite XAD-4 resin. Ind Eng Chem Res 46:7231–7238CrossRefGoogle Scholar
  235. 235.
    Noureddine C, Lekhmici A, Mubarak MS (2008) Sorption properties of the iminodiacetate ion exchange resin, Amberlite IRC-718, toward divalent metal ions. J Appl Polym Sci 107:1316–1319CrossRefGoogle Scholar
  236. 236.
    Lin L-C, Li J-K, Juang R-S (2008) Removal of Cu(II) and Ni(II) from aqueous solutions using batch and fixed-bed ion exchange processes. Desalination 225:249–259CrossRefGoogle Scholar
  237. 237.
    Fernández-Olmo I, Fernández JL, Irabien A, Höll WH (2009) Removal of Arsenic(III), Chromium(III) and Iron(III) traces from hydrofluoric acid solutions by specialty anion exchangers. Solvent Extr Ion Exch 27(5):727–744CrossRefGoogle Scholar
  238. 238.
    Zhang Y, Li Y, Yang L-q, Ma X-j, Wang L-y, Ye Z-F (2010) Characterization and adsorption mechanism of Zn2+ removal by PVA/EDTA resin in polluted water. J Hazard Mater 178(1–3):1046–1054CrossRefGoogle Scholar
  239. 239.
    Sahu SK, Meshram P, Pandey BD, Kumar V, Mankhand TR (2009) Removal of chromium(III) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 99(3–4):170–174CrossRefGoogle Scholar
  240. 240.
    Mustafa S, Shah KH, Naeem A, Waseem M, Ahmad T, Sarfraz S, Irshad M (2010) Kinetic and Equilibrium Studies of Chromium(III) removal by macroporous ion exchanger amberlyst-15 (H+). Chinese J Chem 28(1):27–32CrossRefGoogle Scholar
  241. 241.
    Kir E, Çengeloglu Y, Ersöz M (2005) The effect of chelating agent on the separation of Fe(III) and Ti(IV) from binary mixture solution by cation-exchange membrane. J Colloid Interface Sci 292:498–502CrossRefGoogle Scholar
  242. 242.
    Schulte-Bockholt M, Schuster M (2008) Removal enrichment and recovery of Ni(II), Zn(II) and phosphate from phosphation rinsing waters with liquid-phase polymer-based retention technique. Sep Purif Technol 63:172–178CrossRefGoogle Scholar
  243. 243.
    Cheng Z, Wu Y, Wang N, Yang W, Xu T (2010) Development of a novel hollow fiber cation-exchange membrane from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) for removal of heavy-metal ions. Ind Eng Chem Res 49(7):3079–3087CrossRefGoogle Scholar
  244. 244.
    Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24CrossRefGoogle Scholar
  245. 245.
    Choi JH, Kim SD, Kwon YJ, Kim WJ (2006) Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a waste water. Micropor Mesopor Mater 96(1–3):157–167CrossRefGoogle Scholar
  246. 246.
    Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330CrossRefGoogle Scholar
  247. 247.
    Grimm A, Zanzi R, Björnbom E, Cukierman AL (2008) Comparison of different types of biomasses for copper biosorption. Bioresour Technol 99(7):2559–2565CrossRefGoogle Scholar
  248. 248.
    Naik R, Wen G, Ms D, Hureau S, Uedono A, Wang X, Liu X, Cookson PG, Smith SV (2010) Metal ion binding properties of novel wool powders. J Appl Polym Sc 115(3):1642–1650CrossRefGoogle Scholar
  249. 249.
    Kadous A, Didi MA, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris(methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284:431–438CrossRefGoogle Scholar
  250. 250.
    Selvakumar R, Kavitha S, Sathishkumar M, Jayavignesh V, Swaminathan K (2010) Liquid phase separation of As(V) from aqueous solution using pretreated paecilomyces variotii biomass. Sep Sci Technol 45(6):776–785CrossRefGoogle Scholar
  251. 251.
    Yang DJ, Zheng ZF, Yuan Y, Liu HW, Waclawik ER, Ke XB, Xie MX, Zhu HY (2010) Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water. Phys Chem Chem Phys 12(6):1271–1277CrossRefGoogle Scholar
  252. 252.
    Ertugay N, Bayhan YK (2010) The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 255:137–142CrossRefGoogle Scholar
  253. 253.
    Chen C-Y, Lin M-S, Hsu K-R (2008) Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups. J Hazard Mater 152:986–993CrossRefGoogle Scholar
  254. 254.
    Galán B, Castañeda D, Ortiz I (2008) Integration of ion exchange and non-dispersive solvent extraction processes for the separation and concentration of Cr(VI) from ground waters. J Hazard Mater 152:795–804CrossRefGoogle Scholar
  255. 255.
    Agrawal A, Sahu KK (2006) Separation and recovery of lead from a mixture of some heavy metals using Amberlite IRC 718 chelating resin. J Hazard Mater 133:299–303CrossRefGoogle Scholar
  256. 256.
    Magosso HA, Panteleimonov AV, Kholin YV et al (2006) Synthesis, characterization and metal adsorption properties of the new ion exchanger polymer 3-n-propyl(4-methylpyridinium) silsesquioxane chloride. J Colloid Interface Sci 303:18–24CrossRefGoogle Scholar
  257. 257.
    Rengaraj S, Joo CK, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200 H, 1500 H and IRN97 H. J Hazard Mater 102(2–3):257–275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cláudia Batista Lopes
    • 1
  • Patrícia Ferreira Lito
    • 2
  • Simão Pedro Cardoso
    • 2
  • Eduarda Pereira
    • 1
  • Armando Costa Duarte
    • 1
  • Carlos Manuel Silva
    • 2
    Email author
  1. 1.CESAM, University of AveiroAveiroPortugal
  2. 2.CICECO/Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations