Separation of Amino Acids, Peptides, and Proteins by Ion Exchange Chromatography

  • Tanja Cirkovic Velickovic
  • Jana Ognjenovic
  • Luka Mihajlovic
Chapter

Abstract

Separation of amino acids, peptides, and proteins (bioanalytes) via ion exchange (IE) has widespread usage because it is usually very simple to design and it has high capacity and easily achievable control of the separation process. Amino acids, as principal constituents of proteins and having a plethora of biological functions of their own, are always in focus when developing novel methods. Separation and quantification of amino acids is essential in food science, medicine, agricultural science, etc. Peptides exist in nature and have diverse functions. Digestion of proteins by enzymes also gives complex mixtures of peptides and IE finds its application in peptide separation. There are lots of reasons for the popularity of IE in protein isolation and purification. It is used in research, analysis, and large-scale purification of proteins. Ion exchange is ideal for the initial capture of proteins because of its high capacity, relatively low cost, and its ability to survive rigorous cleaning regimes. This chapter covers basic principles and modern applications of IE in separation of amino acids, peptides, and proteins.

Keywords

Monolithic Column Sepharose Fast Flow Peptide Separation Halophilic Protein Mugwort Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the support of the Ministry of Science and Technological Development of the Republic of Serbia (Grant No. 172024).

References

  1. 1.
    Helfferich FG (1962) Ion-exchange, Mcgraw-hill series in advanced chemistry. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Helfferich FG (1995) Ion-exchange. Dover science books, Dover edn. Dover Publications, New YorkGoogle Scholar
  3. 3.
    LeMaster DM, Richards FM (1982) Prediction of the ph dependence of the separation of weak electrolytes by ion-exchange: amino acid chromatography with competitive buffer ion eluents. Anal Biochem 122(2):223–237. doi:Doi: 10.1016/0003-2697(82)90274-3CrossRefGoogle Scholar
  4. 4.
    Wellner D (1985) Separation of [gamma]-glutamyl amino acids by ion-exchange chromatography. In: Alton M (ed) Methods in enzymology, vol 113. Academic, San Diego, pp 564–566Google Scholar
  5. 5.
    Yu H, Ding YS, Mou SF (2003) Some factors affecting separation and detection of amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A 997(1–2):145–153Google Scholar
  6. 6.
    Stanton PG, Simpson RJ, Lambrou F, Hearn MTW (1983) High-performance liquid chromatography of amino acids, peptides and proteins: XlVII. Analytical and semi-preparative separation of several pituitary proteins by high-performance ion-exchange chromatography. J Chromatogr A 266:273–279CrossRefGoogle Scholar
  7. 7.
    Roos PH (1999) Chapter 1 ion-exchange chromatography. In: Michael K (ed) J Chromatogr Lib vol 61. Elsevier, New York, pp 3–88Google Scholar
  8. 8.
    Scopes RK (2001) Strategies for protein purification. Curr Protoc Protein Sci Chapter 1: Unit 1 2Google Scholar
  9. 9.
    Miksík I (2000) Protein liquid chromatography. In: Kastner M (ed) J Chromatogr Lib, vol 61. Elsevier, Amsterdam, J Chromatogr B: Biomed Sci and Appl 749(1):143–144Google Scholar
  10. 10.
    Jungbauer A, Hahn R (2009) Ion-exchange chromatography. Methods Enzymol 463:349–371CrossRefGoogle Scholar
  11. 11.
    Doonan S (1996) Protein purification protocols, vol 59, Methods in molecular biology. Humana Press, TotowaCrossRefGoogle Scholar
  12. 12.
    Hirs CHW, Stanford M (1951) Chromatography of proteins. Ribonuclease. J Am Chem Soc 73(4):1893–1893Google Scholar
  13. 13.
    Simpson RJ (2004) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. 14.
    Small H (1989) Ion chromatography, Modern analytical chemistry. Plenum, New YorkGoogle Scholar
  15. 15.
    Bonner PLR (2007) Protein purification, The basics. Taylor & Francis, New York/AbingdonGoogle Scholar
  16. 16.
    Yang HW, Viera C, Fischer J, Etzel MR (2002) Purification of a large protein using ion-exchange membranes. Ind Eng Chem Res 41(6):1597–1602CrossRefGoogle Scholar
  17. 17.
    Jungbauer A (2005) Chromatographic media for bioseparation. J Chromatogr A 1065(1):3–12CrossRefGoogle Scholar
  18. 18.
    Scopes RK (1994) Protein purification: principles and practice, 3rd edn, Springer advanced texts in chemistry. Springer, New YorkGoogle Scholar
  19. 19.
    Roy RN, Cramer J, Randon V et al (1998) Buffers for the physiological ph range: thermodyna­mics of the second dissociation of n-(2-hydroxyethyl)piperazine-n′-2-hydroxypropanesulfonic acid from 5 to 55 degrees c. J Sol Chem 27(5):425–434CrossRefGoogle Scholar
  20. 20.
    Scopes RK (1987) Protein purification: principles and practice, 2nd edn, Springer advanced texts in chemistry. Springer, New YorkGoogle Scholar
  21. 21.
    Lage OM, Vasconcelos M, Soares H et al (1996) Suitability of the pH buffers 3- n-n-bis(hydroxethyl)amino -2-hydroxypropanesulfonic acid and n-2-hydroxyethylpiperazine-n′-2-ethanesulfonic acid for in vitro copper toxicity studies. Arch Environ Contam Toxicol 31(2):199–205CrossRefGoogle Scholar
  22. 22.
    Roy RN, Bice J, Greer J et al (1997) Buffers for the physiological ph range: acidic dissociation constants of zwitterionic compounds (aces and ches) in water from 5 to 55 degrees c. J Chem Eng Data 42(1):41–44CrossRefGoogle Scholar
  23. 23.
    Azab HA, Orabi AS, El-Salam ETA (1998) Apparent second-stage dissociation constants of some zwitterionic buffers for biochemical and physiological research in various hydroorganic media. J Chem Eng Data 43(5):703–707CrossRefGoogle Scholar
  24. 24.
    Welling-Wester S, Feijlbrief M, Koedijk D, Welling GW (1998) Detergent extraction of herpes simplex virus type 1 glycoprotein d by zwitterionic and non-ionic detergents and purification by ion-exchange high-performance liquid chromatography. J Chromatogr A 816(1):29–37CrossRefGoogle Scholar
  25. 25.
    Ertingshausen G, Adler HJ, Reichler AS (1969) Fully automated high-speed ion-exchange chromatography of amino acids. J Chromatogr A 42:355–366CrossRefGoogle Scholar
  26. 26.
    Mondino A (1970) Automatic ion-exchange chromatography of amino acids: experimental studies for optimising resin column dimensions. J Chromatogr A 50:260–273. doi:Doi: 10.1016/s0021-9673(00)97948-2 CrossRefGoogle Scholar
  27. 27.
    Yokoyama Y, Yamasaki K, Sato H (2005) Simultaneous determination of urinary creatinine and uv-absorbing amino acids using a novel low-capacity cation-exchange chromatography for the screening of inborn errors of metabolism. J Chromatogr B 816(1–2):333–338CrossRefGoogle Scholar
  28. 28.
    Jandik P, Cheng J, Avdalovic N (2004) Analysis of amino acid-carbohydrate mixtures by anion-exchange chromatography and integrated pulsed amperometric detection. J Biochem Biophys Methods 60(3):191–203CrossRefGoogle Scholar
  29. 29.
    Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A 826(2):109–134CrossRefGoogle Scholar
  30. 30.
    Stenberg M, Marko-Varga G, Öste R (2002) Enantioseparation of – and -amino acids by a coupled system consisting of an ion-exchange column and a chiral column and determination of -aspartic acid and -glutamic acid in soy products. Food Chem 79(4):507–512CrossRefGoogle Scholar
  31. 31.
    Ravindran G, Bryden WL (2005) Tryptophan determination in proteins and feedstuffs by ion-exchange chromatography. Food Chem 89(2):309–314CrossRefGoogle Scholar
  32. 32.
    Arakawa T, Tsumoto K, Kita Y et al (2007) Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 33(4):587–605CrossRefGoogle Scholar
  33. 33.
    Thiele B, Fullner K, Stein N, Oldiges M et al (2008) Analysis of amino acids without derivatization in barley extracts by lc-ms-ms. Anal Bioanal Chem 391(7):2663–2672CrossRefGoogle Scholar
  34. 34.
    Jandik P, Clarke AP, Avdalovic N et al (1999) Analyzing mixtures of amino acids and carbohydrates using bi-modal integrated amperometric detection. J Chromatogr B Biomed Sci Appl 732(1):193–201CrossRefGoogle Scholar
  35. 35.
    Rombouts I, Lamberts L, Celus I et al (2009) Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A 1216(29):5557–5562CrossRefGoogle Scholar
  36. 36.
    Genzel Y, Konig S, Reichl U (2004) Amino acid analysis in mammalian cell culture media containing serum and high glucose concentrations by anion-exchange chromatography and integrated pulsed amperometric detection. Anal Biochem 335(1):119–125CrossRefGoogle Scholar
  37. 37.
    Hanko VP, Rohrer JS (2002) Direct determination of tryptophan using high-performance anion-exchange chromatography with integrated pulsed amperometric detection. Anal Biochem 308(2):204–209CrossRefGoogle Scholar
  38. 38.
    Thiele C, Ganzle MG, Vogel RF (2002) Sample preparation for amino acid determination by integrated pulsed amperometric detection in foods. Anal Biochem 310(2):171–178CrossRefGoogle Scholar
  39. 39.
    Harscoat C , Muhr L, Grévillot G (2003) Reactive ion-exchange chromatography: concentrations and separations of amino acids and peptides by means of an aqueous solution of carbon dioxide under pressure as displacer. Chem Eng Res Des 81(10):1333–1342Google Scholar
  40. 40.
    Zammouri A, Chanel S, Muhr L et al (1999) Displacement chromatography of amino acids by carbon dioxide dissolved in water. Ind Eng Chem Res 38(12):4860–4867CrossRefGoogle Scholar
  41. 41.
    Gill I, Lopez-Fandino R, Jorba X et al (1996) Biologically active peptides and enzymatic approaches to their production. Enzyme Microb Technol 18(3):163–183CrossRefGoogle Scholar
  42. 42.
    Bumberger E, Belitz HD (1993) Bitter taste of enzymic hydrolysates of casein. I. Isolation, structural and sensorial analysis of peptides from tryptic hydrolysates of beta-casein. Z Lebensm Unters Forsch 197(1):14–19CrossRefGoogle Scholar
  43. 43.
    Issaq HJ, Chan KC, Blonder J et al (2009) Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. J Chromatogr A 1216(10):1825–1837CrossRefGoogle Scholar
  44. 44.
    Gilar M, Yu YQ, Ahn J, Fournier J et al (2008) Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides. J Chromatogr A 1191(1–2):162–170Google Scholar
  45. 45.
    Ohyama K, Shirasawa Y, Wada M, Kishikawa N, Ohba Y et al (2004) Investigation of the novel mixed-mode stationary phase for capillary electrochromatography. II. Separation of amino acids and peptides on sulfonated naphthalimido-modified silyl silica gel. Electrophoresis 25(18–19):3224–3230CrossRefGoogle Scholar
  46. 46.
    Wang X, Ding K, Yang C, Lin X, Lu H (2010) Sulfoalkylbetaine-based monolithic column with mixed-mode of hydrophilic interaction and strong anion-exchange stationary phase for capillary electrochromatography. Electrophoresis 31(17):2997–3005Google Scholar
  47. 47.
    Mant CT, Kondejewski LH, Hodges RS (1998) Hydrophilic interaction/cation-exchange chromatography for separation of cyclic peptides. J Chromatogr A 816(1):79–88CrossRefGoogle Scholar
  48. 48.
    Dai J, Shieh SH, Sheng QH, Zhou H, Zeng R (2005) Proteomic analysis with integrated multiple dimensional liquid chromatography/mass spectrometry based on elution of ion-exchange column using ph steps. Anal Chem 77(18):5793–5799CrossRefGoogle Scholar
  49. 49.
    Nogueira R, Lammerhofer M, Lindner W (2005) Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J Chromatogr A 1089(1–2):158–169Google Scholar
  50. 50.
    Qian ZJ, Jung WK, Byun HG, Kim SK (2008) Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, crassostrea gigas against free radical induced DNA damage. Bioresour Technol 99(9):3365–3371CrossRefGoogle Scholar
  51. 51.
    Ye M, Zou H, Liu Z, Ni J (2000) Separation of peptides by strong cation-exchange capillary electrochromatography. J Chromatogr A 869(1–2):385–394Google Scholar
  52. 52.
    Wistuba D, Banspach L, Schurig V (2005) Enantiomeric separation by capillary electrochromatography using monolithic capillaries with sol-gel-glued cyclodextrin-modified silica particles. Electrophoresis 26(10):2019–2026CrossRefGoogle Scholar
  53. 53.
    Issaq HJ, Xiao Z, Veenstra ZD (2007) Serum and plasma proteomics. Chem Rev 107(8):3601–3620. doi: 10.1021/cr068287r CrossRefGoogle Scholar
  54. 54.
    Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676–682CrossRefGoogle Scholar
  55. 55.
    Raida M, Schulz-Knappe P, Heine G, Forssmann WG (1999) Liquid chromatography and electrospray mass spectrometric mapping of peptides from human plasma filtrate. J Am Soc Mass Spectrom 10(1):45–54CrossRefGoogle Scholar
  56. 56.
    Richter R, Schulz-Knappe P, Schrader M et al (1999) Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J Chromatogr B Biomed Sci Appl 726(1–2):25–35CrossRefGoogle Scholar
  57. 57.
    Heine G, Raida M, Forssmann WG (1997) Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry. J Chromatogr A 776(1):117–124CrossRefGoogle Scholar
  58. 58.
    Janini GM, Zhou M, Yu YR, Blonder J et al (2003) On-column sample enrichment for capillary electrophoresis sheathless electrospray ionization mass spectrometry: evaluation for peptide analysis and protein identification. Anal Chem 75(21):5984–5993CrossRefGoogle Scholar
  59. 59.
    Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247CrossRefGoogle Scholar
  60. 60.
    Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690CrossRefGoogle Scholar
  61. 61.
    Dormeyer W, Mohammed S, Breukelen B, Krijgsveld J, Heck AJ (2007) Targeted analysis of protein termini. J Proteome Res 6(12):4634–4645CrossRefGoogle Scholar
  62. 62.
    Mitulovic G, Stingl C, Smoluch M et al (2004) Automated, on-line two-dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests. Proteomics 4(9):2545–2557CrossRefGoogle Scholar
  63. 63.
    Nagele E, Vollmer M, Horth P (2004) Improved 2d nano-lc/ms for proteomics applications: a comparative analysis using yeast proteome. J Biomol Tech 15(2):134–143Google Scholar
  64. 64.
    Winnik WM (2005) Continuous ph/salt gradient and peptide score for strong cation-exchange chromatography in 2d-nano-lc/ms/ms peptide identification for proteomics. Anal Chem 77(15):4991–4998CrossRefGoogle Scholar
  65. 65.
    Sandra K, Moshir M, D’Hondt F et al (2009) Highly efficient peptide separations in proteomics. Part 2: bi- and multidimensional liquid-based separation techniques. J Chromatogr B Analyt Technol Biomed Life Sci 877(11–12):1019–1039Google Scholar
  66. 66.
    Jacobs JM, Mottaz HM, Yu LR et al (2004) Multidimensional proteome analysis of human mammary epithelial cells. J Proteome Res 3(1):68–75CrossRefGoogle Scholar
  67. 67.
    Aivaliotis M, Gevaert K, Falb M et al (2007) Large-scale identification of n-terminal peptides in the halophilic archaea halobacterium salinarum and natronomonas pharaonis. J Proteome Res 6(6):2195–2204CrossRefGoogle Scholar
  68. 68.
    Yuan H, Zhang L, Hou C et al (2009) Integrated platform for proteome analysis with combination of protein and peptide separation via online digestion. Anal Chem 81(21):8708–8714CrossRefGoogle Scholar
  69. 69.
    Gao M, Guan X, Hong G, Zhang X (2009) Advances in multidimensional high performance liquid chromatography for separation technology in proteomic study. Se Pu 27(5):551–555Google Scholar
  70. 70.
    Slotta DJ, Barrett T, Edgar R (2009) Ncbi peptidome: a new public repository for mass spectrometry peptide identifications. Nat Biotechnol 27(7):600–601CrossRefGoogle Scholar
  71. 71.
    Ji L, Barrett T, Ayanbule O et al (2010) Ncbi peptidome: a new repository for mass spectrometry proteomics data. Nucleic Acids Res 38(Database issue):D731–735Google Scholar
  72. 72.
    Li Y, Lee ML (2009) Biocompatible polymeric monoliths for protein and peptide separations. J Sep Sci 32(20):3369–3378CrossRefGoogle Scholar
  73. 73.
    Chen X, Tolley HD, Lee ML (2009) Polymeric strong cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins. J Sep Sci 32(15–16):2565–2573CrossRefGoogle Scholar
  74. 74.
    Gatschelhofer C, Mautner A, Reiter F et al (2009) Ring-opening metathesis polymerization for the preparation of norbornene-based weak cation-exchange monolithic capillary columns. J Chromatogr A 1216(13):2651–2657CrossRefGoogle Scholar
  75. 75.
    Krenkova J, Gargano A, Lacher NA et al (2009) High binding capacity surface grafted monolithic columns for cation-exchange chromatography of proteins and peptides. J Chromatogr A 1216(40):6824–6830CrossRefGoogle Scholar
  76. 76.
    Bayard F, Raveneau A, Letourneau A et al (2009) Use of magnetic carboxyl beads to purify a cationic peptide in a batch system. Anal Biochem 384(2):350–352CrossRefGoogle Scholar
  77. 77.
    Yamamoto S, Miyagawa E (1999) Retention behavior of very large biomolecules in ion-exchange chromatography. J Chromatogr A 852(1):25–30CrossRefGoogle Scholar
  78. 78.
    Rege K, Pepsin M, Falcon B et al (2006) High-throughput process development for recombinant protein purification. Biotechnol Bioeng 93(4):618–630CrossRefGoogle Scholar
  79. 79.
    Cutler P (2004) Protein purification protocols, vol 244, 2nd edn, Methods in molecular biology. Humana Press, TotowaGoogle Scholar
  80. 80.
    Neverova P, Van Eyk JE (2005) Role of chromatographic techniques in proteomic analysis. J Chromatogr B 815(1–2):51–63CrossRefGoogle Scholar
  81. 81.
    Shi QS, Zhou Y, Sun Y (2005) Influence of ph and ionic strength on the steric mass-action model parameters around the isoelectric point of protein. Biotechnol Prog 21(2):516–523CrossRefGoogle Scholar
  82. 82.
    Kelley BD, Tobler SA, Brown P, Coffman JL et al (2008) Weak partitioning chromatography for anion-exchange purification of monoclonal antibodies. Biotechnol Bioeng 101(3):553–566CrossRefGoogle Scholar
  83. 83.
    Bodo E, Durieux A, Saint-Hubert C, Lavallee R et al (2006) Recovery of nuclease produced by lactococcus lactis using expanded bed ion-exchange chromatography. Biotechnol Lett 28(13):1033–1039CrossRefGoogle Scholar
  84. 84.
    Nordborg A, Zhang B, He XPZ et al (2009) Characterization of monoclonal antibodies using polymeric cation-exchange monoliths in combination with salt and ph gradients. J Sep Sci 32(15–16):2668–2673CrossRefGoogle Scholar
  85. 85.
    Blanusa M, Perovic I, Popovic M, Polovic N et al (2007) Quantification of Art v 1 and Act c 1 being major allergens of mugwort pollen and kiwi fruit extracts in mass-units by ion-exchange hplc-uv method. J Chromatogr B-Anal Tech Biomed Life Sci 857(2):188–194CrossRefGoogle Scholar
  86. 86.
    Tsonev LI, Hirsh AG (2008) Theory and applications of a novel ion-exchange chromatographic technology using controlled ph gradients for separating proteins on anionic and cationic stationary phases. J Chromatogr A 1200(2):166–182CrossRefGoogle Scholar
  87. 87.
    Fonseca LP, Cabral JMS (2002) An integrated downstream processing strategy for the recovery and partial purification of penicillin acylase from crude media. J Chem Technol Biotechnol 77(10):1176–1185CrossRefGoogle Scholar
  88. 88.
    Wang Q, Kim JS, Chung KC (2004) Purification and characterization of cyclic amp-binding protein from ganoderma lucidum. Chem Res Chinese U 20(5):588–593Google Scholar
  89. 89.
    Guerin-Dubiard MPC, Hietanen A, Quiros del Bosque A et al (2005) Hen egg white fractionation by ion-exchange chromatography. J Chromatogr A 1090:58–67CrossRefGoogle Scholar
  90. 90.
    Doultani KNTS, Etzel MR (2004) Fractionation of proteins from whey using cation-exchange chromatography. Process Biochem 39:1737–1743CrossRefGoogle Scholar
  91. 91.
    Smithers GW, Ballard FJ, Copeland AD et al (1996) New opportunities from the isolation and utilization of whey proteins. J Dairy Sci 79(8):1454–1459CrossRefGoogle Scholar
  92. 92.
    Delfour A, Jolles J, Alais C, Jolles P (1965) Caseino-glycopeptides: characterization of a methionine residue and of the n-terminal sequence. Biochem Biophys Res Commun 19:452–455CrossRefGoogle Scholar
  93. 93.
    Markus IK, Kulozika U (2008) Separation of a glycosylated and non-glycosylated fraction of caseinomacropeptide using different anion-exchange stationary phases. J Chromatogr A 1208:126–132CrossRefGoogle Scholar
  94. 94.
    Leicht W, Pundak S (1981) Large-scale purification of halophilic enzymes by salting-out mediated chromatography. Anal Biochem 114(1):186–192CrossRefGoogle Scholar
  95. 95.
    Kaufmann M (1997) Unstable proteins: how to subject them to chromatographic separations for purification procedures. J Chromatogr B 699(1–2):347–369Google Scholar
  96. 96.
    Heesche-Wagner K, Schwarz T, Bartholmes P, Kaufmann M (1995) Purification of unstable proteins from halobacterium salinarium crude cell extracts: combined cell disruption and desalting by a hollow-fiber membrane module as an access to perform ion-exchange chromatography. J Chromatogr A 711(1):175–179CrossRefGoogle Scholar
  97. 97.
    Dai XP, Luo LG, Sirkar KK (1999) An integrated process for biomolecule isolation and purification. Biotechnol Prog 15(6):1095–1105CrossRefGoogle Scholar
  98. 98.
    Xu YK, Sirkar KK, Dai XP, Luo RG (2005) A new integrated membrane filtration and chromatographic device. Biotechnol Prog 21(2):590–597CrossRefGoogle Scholar
  99. 99.
    Kokpinar O, Harkensee D, Kasper C (2006) Innovative modular membrane adsorber system for high-throughput downstream screening for protein purification. Biotechnol Prog 22(4):1215–1219CrossRefGoogle Scholar
  100. 100.
    Arilla MC, Gonzalez-Rioja R, Ibarrola I et al (2006) A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay to quantify parietaria judaica major allergens, par j 1 and par j 2. Clin Exp Allergy 36(1):87–93CrossRefGoogle Scholar
  101. 101.
    Jimeno L, Duffort O, Serrano C et al (2004) Monoclonal antibody-based elisa to quantify the major allergen of artemisia vulgaris pollen, art v 1. Allergy 59(9):995–1001CrossRefGoogle Scholar
  102. 102.
    Gavrovic-Jankulovic M, Spasic M, Cirkovic Velickovic T, Stojanovic M et al (2008) Quantification of the thaumatin-like kiwi allergen by a monoclonal antibody-based elisa. Mol Nutr Food Res 52(6):701–707CrossRefGoogle Scholar
  103. 103.
    van Ree R, Dorpema JW, Vieths S (2005) Allergy vaccines: a need for standardisation in mass units of major allergen. Pharmeuropa Bio 2005(1):27–30Google Scholar
  104. 104.
    Slater JE (2005) Characterization of allergen extracts. Dev Biol (Basel) 122:145–152Google Scholar
  105. 105.
    Cirkovic Velickovic T, Gavrovic-Jankulovic M, Jankov RM (2005) Overview of the most commonly used methods in allergen characterization. J Serb Chem Soc 70(3):347–360CrossRefGoogle Scholar
  106. 106.
    Punzet M, Ferreira F, Briza P et al (2006) Profiling preparations of recombinant birch pollen allergen bet v 1a with capillary zone electrophoresis in pentamine modified fused-silica capillaries. J Chromatogr B Analyt Technol Biomed Life Sci 839(1–2):19–29Google Scholar
  107. 107.
    Duffort O, Palomares O, Lombardero M, Villalba M et al (2006) Variability of ole e 9 allergen in olive pollen extracts: relevance of minor allergens in immunotherapy treatments. Int Arch Allergy Immunol 140(2):131–138CrossRefGoogle Scholar
  108. 108.
    Stephan O, Weisz N, Vieths S, Weiser T et al (2004) Protein quantification, sandwich elisa, and real-time pcr used to monitor industrial cleaning procedures for contamination with peanut and celery allergens. J AOAC Int 87(6):1448–1457Google Scholar
  109. 109.
    Helsper JP, Gilissen LJ, van Ree R, America AH et al (2002) Quadrupole time-of-flight mass spectrometry: a method to study the actual expression of allergen isoforms identified by pcr cloning. J Allergy Clin Immunol 110(1):131–138, 110CrossRefGoogle Scholar
  110. 110.
    Faeste CK, Ronning HT, Christians U, Granum PE (2011) Liquid chromatography and mass spectrometry in food allergen detection. J Food Prot 74(2):316–345CrossRefGoogle Scholar
  111. 111.
    Erler A, Hawranek T, Kruckemeier L, Asam C, Egger M, Ferreira F, Briza P (2011) Proteomic profiling of birch (betula verrucosa) pollen extracts from different origins. Proteomics 11(8):1486–1498CrossRefGoogle Scholar
  112. 112.
    Tantoush Z, Stanic D, Stojadinovic M, Ognjenovic J, Mihajlovic L, Atanaskovic-Markovic M, Cirkovic Velickovic T (2011) Digestibility and allergenicity of beta-lactoglobulin following laccase-mediated cross-linking in the presence of sour cherry phenolics. Food Chem 125(1):84–91CrossRefGoogle Scholar
  113. 113.
    Sabato V, van Hengel AJ, De Knop KJ, Verweij MM, Hagendorens MM, Bridts CH, De Clerck LS, Schiavino D, Stevens WJ, Ebo DG (2011) Human basophils: a unique biological instrument to detect the allergenicity of food. J Investig Allergol Clin Immunol 21(3):179–184Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tanja Cirkovic Velickovic
    • 1
  • Jana Ognjenovic
    • 1
  • Luka Mihajlovic
    • 1
  1. 1.University of BelgradeBelgradeSerbia

Personalised recommendations