Advertisement

Using Chemical Kinetics to Model Neuronal Signalling Pathways

  • Lukas Endler
  • Melanie I. Stefan
  • Stuart J. Edelstein
  • Nicolas Le NovèreEmail author
Chapter

Abstract

Understanding the physical principles and mechanisms underlying biochemical reactions allows to create mechanistic mathematical models of complex biological processes, such as those occurring during neuronal signal transduction. In this chapter we introduce basic concepts of chemical and enzyme kinetics, and reaction thermodynamics. Furthermore we show, how the temporal evolution of a reaction system can be described by ordinary differential equations, that can numerically solved on a computer. Finally we give a short overview of different approaches to modelling cooperative binding to, and allosteric control of, receptors and ion channels.

Keywords

Ligand Concentration Ligand Binding Site Stoichiometric Coefficient Enzyme Catalysed Reaction Second Order Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adair GS (1925) The hemoglobin system. IV. The oxygen dissociation curve of hemoglobin. J Biol Chem 63:529–545Google Scholar
  2. Allen JP (ed) (2008) Biophysical chemistry. Wiley-Blackwell, OxfordGoogle Scholar
  3. Bhalla U, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387PubMedCrossRefGoogle Scholar
  4. Borghans JM, Dupont G, Goldbeter A (1997) Complex intracellular calcium oscillations. A theoretical exploration of possible mechanisms. Biophys Chem 66(1):25–41Google Scholar
  5. Briggs GE, Haldane JB (1925) A note on the kinetics of enzyme action. Biochem J 19(2):338–339PubMedGoogle Scholar
  6. Colquhoun D, Dowsland KA, Beato M, Plested AJR (2004) How to impose microscopic reversibility in complex reaction mechanisms. Biophys J 86(6):3510–3518PubMedCrossRefGoogle Scholar
  7. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland Press, LondonGoogle Scholar
  8. Duke TA, Novère NL, Bray D (2001) Conformational spread in a ring of proteins: a stochastic approach to allostery. J Mol Biol 308(3):541–553PubMedCrossRefGoogle Scholar
  9. Edelstein SJ, Schaad O, Henry E, Bertrand D, Changeux JP (1996) A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol Cybern 75(5):361–379PubMedCrossRefGoogle Scholar
  10. Edelstein SJ, Stefan MI, Le Novère N (2010) Ligand depletion in vivo modulates the dynamic range and cooperativity of signal transduction. PLoS One 5(1):e8449PubMedCrossRefGoogle Scholar
  11. Fall C, Marland E, Wagner J, Tyson J (eds) (2002) Computational cell biology. Springer, New YorkGoogle Scholar
  12. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96:1254–1265CrossRefGoogle Scholar
  13. Hairer E, Wanner G (1996) Solving ordinary differential equation II: stiff and differential-algebraic problems. Springer, BerlinGoogle Scholar
  14. Hairer E, Nrsett SP, Wanner G (1993) Solving ordinary differential equations: nonstiff problems. Springer, BerlinGoogle Scholar
  15. Heinrich R, Schuster S (1996) The regulation of cellular systems. Springer, New YorkCrossRefGoogle Scholar
  16. Henri V (1902) Theorie generale de l’action de quelques diastases. C R Acad Sci. Paris 135:916–919Google Scholar
  17. Hill AV (1910) The possible effects of the aggregation of the molecules of hmoglobin on its dissociation curves. J Physiol 40:i–viiGoogle Scholar
  18. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI–a complex pathway simulator. Bioinformatics 22(24):3067–3074PubMedCrossRefGoogle Scholar
  19. Klotz IM (1946) The application of the law of mass action to binding by proteins. Interactions with calcium. Arch Biochem 9:109–117Google Scholar
  20. Klotz IM (2004) Ligand-receptor complexes: origin and development of the concept. J Biol Chem 279(1):1–12PubMedCrossRefGoogle Scholar
  21. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44(2):98–104PubMedCrossRefGoogle Scholar
  22. Koshland DJ, Nmethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1):365–385PubMedCrossRefGoogle Scholar
  23. Kotyk A (1967) Mobility of the free and of the loaded monosaccharide carrier in saccharomyces cerevisiae. Biochim Biophys Acta 135(1):112–119PubMedCrossRefGoogle Scholar
  24. Land BR, Salpeter EE, Salpeter MM (1981) Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc Natl Acad Sci USA 78(11):7200–7204PubMedCrossRefGoogle Scholar
  25. LeMasson G, Maex R (2001) Computational neuroscience, CRC press, London. Chapter Introduction to equation solving and parameter fitting, pp 1–23Google Scholar
  26. Mello BA, Tu Y (2005) An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc Natl Acad Sci USA 102(48):17354–17359PubMedCrossRefGoogle Scholar
  27. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369Google Scholar
  28. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118PubMedCrossRefGoogle Scholar
  29. Najdi TS, Yang CR, Shapiro BE, Hatfield GW, Mjolsness ED (2006) Application of a generalized MWC model for the mathematical simulation of metabolic pathways regulated by allosteric enzymes. J Bioinform Comput Biol 4(2):335–355PubMedCrossRefGoogle Scholar
  30. Parthimos D, Haddock RE, Hill CE, Griffith TM (2007) Dynamics of a three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys J 93(5):1534–1556PubMedCrossRefGoogle Scholar
  31. Rubin MM, Changeux JP (1966) On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol 21(2):265–274PubMedCrossRefGoogle Scholar
  32. Sauro H (2000) Jarnac: a system for interactive metabolic analysis. In: Hofmeyr JHS, Rohwer JM, Snoep JL (eds) Animating the cellular map 9th international BioThermoKinetics meeting,chap. 33.Stellenbosch University Press, Stellenbosch, pp 221–228Google Scholar
  33. Segel IH (ed) (1993) Enzyme kinetics. Wiley, New YorkGoogle Scholar
  34. Stefan MI, Edelstein SJ, Le Novère N (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc Natl Acad Sci USA 105(31):10768–10773PubMedCrossRefGoogle Scholar
  35. Stefan MI, Edelstein SJ, Le Novère N (2009) Computing phenomenologic Adair-Klotz constants from microscopic MWC parameters. BMC Syst Biol 3:68PubMedCrossRefGoogle Scholar
  36. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M (2003) E-cell 2: multi-platform E-cell simulation system. Bioinformatics 19(13):1727–1729PubMedCrossRefGoogle Scholar
  37. Waage P, Guldberg C (1864) Studies concerning affinity. Forhandlinger: Videnskabs-Selskabet i Christiana 35Google Scholar
  38. Yonetani T, Park SI, Tsuneshige A, Imai K, Kanaori K (2002) Global allostery model of hemoglobin. Modulation of O(2) affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors. J Biol Chem 277(37):34508–34520Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Lukas Endler
    • 1
  • Melanie I. Stefan
    • 1
  • Stuart J. Edelstein
    • 1
  • Nicolas Le Novère
    • 1
    Email author
  1. 1.EMBL-EBIHinxtonUK

Personalised recommendations