Phosphoinositide Signaling During Membrane Transport in Saccharomyces Cerevisiae

Part of the Subcellular Biochemistry book series (SCBI, volume 59)


Phosphatidylinositol (PI) is distinct from other phospholipids, possessing a head group that can be modified by phosphorylation at multiple positions to generate unique signaling molecules collectively known as phosphoinositides. The set of kinases and phosphatases that regulate PI metabolism are conserved throughout eukaryotic evolution, and numerous studies have demonstrated that phosphoinositides regulate a diverse spectrum of cellular processes, including vesicle transport, cell proliferation, and cytoskeleton organization. Over the past two decades, nearly all PI derivatives have been shown to interact directly with cellular proteins to affect their localization and/or activity. Additionally, there is growing evidence, which suggests that phosphoinositides may also affect local membrane topology. Here, we focus on the role of phosphoinositides in membrane trafficking and underscore the significant role that yeast has played in the field.


Lysosomal/vacuolar trafficking Autophagy Endocytosis Protein secretion Actin cytoskeleton 


  1. Aguliar RC, Watson HA, Wendland B (2003) The yeast Ent1 is recruited to membranes through multiple independent interactions. J Biol Chem 278:10737–10743CrossRefGoogle Scholar
  2. Aguliar RC, Longhi SA, Shaw JD, Yeh LY, Kim S, Schon A, Freire E, Hsu A, McCormick WK, Watson HA, Wendland B (2006) Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci U S A 103:4116–4121CrossRefGoogle Scholar
  3. Audhya A, Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2:593–605PubMedCrossRefGoogle Scholar
  4. Audhya A, Emr SD (2003) Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22:4223–4236PubMedCrossRefGoogle Scholar
  5. Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11:2673–2689PubMedGoogle Scholar
  6. Audhya A, Loewith R, Parsons AB, Gao L, Tabuchi M, Zhou J, Boone C, Hall MN, Emr SD (2004) Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J 23:3747–3757PubMedCrossRefGoogle Scholar
  7. Baird D, Stefan C, Audhya A, Weys S, Emr SD (2008) Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane require Ypp1 and Efr3. J Cell Biol 183:1061–1074PubMedCrossRefGoogle Scholar
  8. Barth H, Meiling-Wesse K, Epple UD, Thumm M (2001) Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett 508:23–28PubMedCrossRefGoogle Scholar
  9. Beh CT, Cool L, Phillips J, Rine J (2001) Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157:1117–1140PubMedGoogle Scholar
  10. Bertin A, McMurray MA, Grob P, Park SS, Garcia G, Patanwala I, Ng HL, Alber T, Thorner J, Nogales E (2008) Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci U S A 105:8274–8279PubMedCrossRefGoogle Scholar
  11. Bertin A, McMurray MA, Thai L, Garcia G, Votin V, Grob P, Allyn T, Thorner J, Nogales E (2010) Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J Mol Biol 404:711–731PubMedCrossRefGoogle Scholar
  12. Bilodeau PS, Winistorfer SC, Kearney WR, Robertson AD, Piper RC (2003) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 163:237–243Google Scholar
  13. Black MW, Pelham HR (2000) A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J Cell Biol 151:587–600PubMedCrossRefGoogle Scholar
  14. Bonangelino CJ, Catlett NL, Weisman LS (1997) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17:6847–6858PubMedGoogle Scholar
  15. Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286PubMedCrossRefGoogle Scholar
  16. Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL (2001) The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell 8:829–839PubMedCrossRefGoogle Scholar
  17. Burd CG, Emr SD (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157–162PubMedCrossRefGoogle Scholar
  18. Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900PubMedCrossRefGoogle Scholar
  19. Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584:1302–1312PubMedCrossRefGoogle Scholar
  20. Burston HE, Maldonado-Baez L, Davey M, Montpetit B, Schluter C, Wendland B, Conibear E (2009) Regulators of yeast endocytosis identified by systematic quantitative analysis. J Cell Biol 185:1097–1110PubMedCrossRefGoogle Scholar
  21. Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322PubMedCrossRefGoogle Scholar
  22. Chang FS, Han GS, Carman GM, Blumer KJ (2005) A WASP-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility. J Cell Biol 171:133–142PubMedCrossRefGoogle Scholar
  23. Cheever ML, Sato TK, Beer T de, Kutateladze TG, Emr SD, Overduin M (2001) Phox domain interaction with PtdIns(3)P targets the Vam7 tSNARE to vacuole membranes. Nat Cell Biol 3:613–618PubMedCrossRefGoogle Scholar
  24. Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236PubMedCrossRefGoogle Scholar
  25. Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109:523–535PubMedCrossRefGoogle Scholar
  26. Cooke FT, Dove SK, McEwen RK, Painter G, Holmes AB, Hall MN, Michell RH, Parker PJ (1998) The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol 8:1219–1222PubMedCrossRefGoogle Scholar
  27. Cooke FT, Michell RH, Parker PJ, Lemmon MA (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23:1922–1933PubMedCrossRefGoogle Scholar
  28. Copic A, Starr TL, Schekman R (2007) Ent3p and Ent5p exhibit cargo-specific functions in trafficking proteins between the trans-Golgi network and the endosomes in yeast. Mol Biol Cell 18:1803–1815PubMedCrossRefGoogle Scholar
  29. Costaguta G, Stefan CJ, Bensen ES, Emr SD, Payne GS (2001) Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 12:1885–1896PubMedGoogle Scholar
  30. Costaguta G, Duncan MC, Fernandez GE, Huang GH, Payne GS (2006) Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol Biol Cell 17:3907–3920PubMedCrossRefGoogle Scholar
  31. Demmel L, Gravert M, Ercan E, Habermann B, Muller-Reichert T, Kukhtina V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19:1991–2002PubMedCrossRefGoogle Scholar
  32. Desrivieres S, Cooke FT, Morales-Johansson H, Parker PJ, Hall MN (2002) Calmodulin controls organization of the actin cytoskeleton via regulation of phosphatidylinositol (4,5)-bisphosphate synthesis in Saccharomyces cerevisiae. Biochem J 15:945–951Google Scholar
  33. Diraviyam K, Stahelin RV, Cho W, Murray D (2003) Computer modeling of the membrane interaction of FYVE domains. J Mol Biol 328:721–736PubMedCrossRefGoogle Scholar
  34. Dove SK, Johnson ZE (2007) Our FABulous VACation: a decade of phosphatidylinositol 3,5-bisphosphate. Biochem Soc Symp 74:129–139PubMedCrossRefGoogle Scholar
  35. Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Bilodeau PS, Windistorfer SC, Kearney WR, Robertson AD, Piper RC (2004) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 163:237–243CrossRefGoogle Scholar
  36. Dumas JJ, Merithew E, Sudharshan E, Rajamani D, Hayes S, Lawe D, Corvera S, Lambright DG (2001) Multivalent endosome targeting by homodimeric EEA1. Mol Cell 8:947–958PubMedCrossRefGoogle Scholar
  37. Eby JJ, Holly SP, Drogen F van, Grishin AV, Peter M, Drubin DG, Blumer KJ (1998) Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr Biol 8:967–970PubMedCrossRefGoogle Scholar
  38. Efe JA, Botelho RJ, Emr SD (2005) The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr Opin Cell Biol 17:402–408PubMedCrossRefGoogle Scholar
  39. Efe JA, Botelho RJ, Emr SD (2007) Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol Biol Cell 18:4232–4244PubMedCrossRefGoogle Scholar
  40. Eugster A, Pecheur E, Michel F, Winsor B, Letourneur F, Friant S (2004) Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. Mol Biol Cell 15:3031–3041PubMedCrossRefGoogle Scholar
  41. Ekena K, Stevens TH (1995) The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol Cell Biol 15:1671–1678PubMedGoogle Scholar
  42. Fadri M, Daquinag A, Wang S, Xue T, Kunz J (2005) The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 16:1883–1900PubMedCrossRefGoogle Scholar
  43. Fairn GD, Curwin AJ, Stefan CJ, McMaster CR (2007) The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Proc Natl Acad Sci U S A 104:15352–15357PubMedCrossRefGoogle Scholar
  44. Farre JC, Krick R, Subramani S, Thumm M (2009) Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 21:522–530PubMedCrossRefGoogle Scholar
  45. Faulhammer F, Konrad G, BranKatschk B, Tahirovic S, Knodler A, Mayinger P (2005) Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol 168:185–191PubMedCrossRefGoogle Scholar
  46. Faulhammer F, Kanjilal-Kolar S, Knodler A, Lo J, Lee Y, Konrad G, Mayinger P (2007) Growth control of Golgi phosphoinositides by reciprocal localization of sac1 lipid phosphatase and pik1 4-kinase. Traffic 8:1554–1567PubMedCrossRefGoogle Scholar
  47. Flick JS, Thorner J (1993) Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol 13:5861–5876PubMedGoogle Scholar
  48. Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411PubMedGoogle Scholar
  49. Friant S, Pecheur E, Eugster A, Michel F, Lefkir Y, Nourrisson D, Letourneur F (2003) Ent3p is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev Cell 5:499–511PubMedCrossRefGoogle Scholar
  50. Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR (2002) Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12:1623–1627PubMedCrossRefGoogle Scholar
  51. Garcia-Bustos JF, Marini F, Stevenson I, Frei C, Hall MN (1994) PIK1, an essential phosphatidylinositol 4-kinase associated with the yeast nucleus. EMBO J 13:2352–2361PubMedGoogle Scholar
  52. Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79PubMedCrossRefGoogle Scholar
  53. Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251Google Scholar
  54. Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R (1998) FYVE fingers bind PtdIns(3)P. Nature 394:432–433PubMedCrossRefGoogle Scholar
  55. Gorbatyuk VY, Nosworthy NJ, Robson SA, Bains NP, Maciejewski MW, Dos Remedious CG, King GF (2006) Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. Mol Cell 24:511–522PubMedCrossRefGoogle Scholar
  56. Guo S, Stolz LE, Lemrow SM, York JD (1999a) SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 274:12990–12995CrossRefGoogle Scholar
  57. Guo W, Roth D, Walch-Solimena C, Novick P (1999b) The exocyst is an effector of Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071–1080CrossRefGoogle Scholar
  58. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274:34294–34300PubMedCrossRefGoogle Scholar
  59. Han GS, Audhya A, Markley DJ, Emr SD, Carman GM (2002) The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity. J Biol Chem 277:47709–47718PubMedCrossRefGoogle Scholar
  60. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedCrossRefGoogle Scholar
  61. He B, Xi F, Zhang X, Zhang J, Guo W (2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26:4053–4065PubMedCrossRefGoogle Scholar
  62. He J, Vora M, Haney RM, Filonov GS, Musselman CA, Burd CG, Kutateladze AG, Verkhusha VV, Stahelin RV, Kutateladze TG (2009) Membrane insertion of the FYVE domain is modulated by pH. Proteins 76:852–860PubMedCrossRefGoogle Scholar
  63. Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241PubMedCrossRefGoogle Scholar
  64. Herman PK, Stack JH, DeModena JA, Emr SD (1991) A novel protein kinase homolog essential for protein sorting to the yeast lysosome-like vacuole. Cell 64:425–437PubMedCrossRefGoogle Scholar
  65. Hettema EH, Lewis MJ, Black MW, Pelham HR (2003) Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 22:548–557PubMedCrossRefGoogle Scholar
  66. Holly SP, Blumer KJ (1999) PAK-family kinases regulate cell and actin polarization throughout the cell cycle of Saccharomyces cerevisiae. J Cell Biol 147:845–856PubMedCrossRefGoogle Scholar
  67. Homma K, Terui S, Minemura M, Qadota H, Anraku Y, Kanaho Y, Ohya Y (1998) Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J Biol Chem 273:15770–15786CrossRefGoogle Scholar
  68. Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13:3162–3177PubMedCrossRefGoogle Scholar
  69. Huang WP, Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27:409–420PubMedCrossRefGoogle Scholar
  70. Huang KM, D’Hondt K, Riezman H, Lemmon SK (1999) Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J 18:3897–3908PubMedCrossRefGoogle Scholar
  71. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691PubMedCrossRefGoogle Scholar
  72. Im YJ, Hurley JH (2008) Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev Cell 14:902–913PubMedCrossRefGoogle Scholar
  73. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T (2001) Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291:1047–1051Google Scholar
  74. Janmey PA, Stossel TP (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364PubMedCrossRefGoogle Scholar
  75. Kagiwada S, Hashimoto M (2007) The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity. Biochem Biophys Res Commun 364:870–876PubMedCrossRefGoogle Scholar
  76. Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6p/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291PubMedCrossRefGoogle Scholar
  77. Katzmann DJ, Stefan CJ, Babst M, Emr SD (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 162:413–423PubMedCrossRefGoogle Scholar
  78. Kearns BG, McGee TP, Mayinger P, Gedvilaite A, Phillips SE, Kagiwada S, Bankaitis VA (1997) Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105PubMedCrossRefGoogle Scholar
  79. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530PubMedCrossRefGoogle Scholar
  80. Kim K, McCully ME, Bhattacharya N, Butler B, Sept D, Cooper JA (2007) Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J Biol Chem 282:5871–5879PubMedCrossRefGoogle Scholar
  81. Krick R, Tolstrup J, Appelles A, Henke S, Thumm M (2006) The relevance of the phosphatidylinositol phosphate-binding motif FRRGT of Atg18 and Atg21 for the CVT pathway and autophagy. FEBS Lett 580:4632–4638PubMedCrossRefGoogle Scholar
  82. Krick R, Henke S, Tolstrup J, Thumm M (2008) Dissecting the localization and function of Atg18, Atg21, and Ygr223c. Autophagy 4:896–910PubMedGoogle Scholar
  83. Kusano K, Abe H, Obinata T (1999) Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol Cell Biochem 190:133–141PubMedCrossRefGoogle Scholar
  84. Kutateladze TG (2006) Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim Biophys Acta 1761:868–877PubMedCrossRefGoogle Scholar
  85. Kutateladze TG (2007) Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog Lipid Res 46:315–327PubMedCrossRefGoogle Scholar
  86. Kutateladze TG, Ogburn KD, Watson WT, Beer T de, Emr SD, Burd CG, Overduin M (1999) Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol Cell 3:805–811PubMedCrossRefGoogle Scholar
  87. Kutateladze TG, Capelluto DG, Ferguson CG, Cheever ML, Kutateladze AG, Prestwich GD, Overduin M (2004) Multivalent mechanism of membrane insertion by the FYVE domain. J Biol Chem 279:3050–3057PubMedCrossRefGoogle Scholar
  88. Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474PubMedCrossRefGoogle Scholar
  89. Lee SA, Eyeson R, Cheever ML, Geng J, Verkhusha VV, Burd C, Overduin M, Kutateladze TG (2005) Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc Natl Acad Sci U S A 102:13052–13057PubMedCrossRefGoogle Scholar
  90. Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS (2004) ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci 117:9–18PubMedCrossRefGoogle Scholar
  91. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111PubMedCrossRefGoogle Scholar
  92. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291PubMedCrossRefGoogle Scholar
  93. Levine TP, Munro S (2001) Dual targeting of Osh1p, a yeast homologue of oxysterol-binding protein, to both the Golgi and the nucleus-vacuole junction. Mol Biol Cell 12:1633–1644PubMedGoogle Scholar
  94. Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and --independent components. Curr Biol 12:695–704PubMedCrossRefGoogle Scholar
  95. Li X, Rivas MP, Fang M, Marchena J, Mehrotra B, Chaudhary A, Feng L, Prestwich GD, Bankaitis VA (2002) Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J Cell Biol 157:63–77PubMedCrossRefGoogle Scholar
  96. Liu J, Sun Y, Oster GF, Drubin DG (2010) Mechanochemical crosstalk during endocytic vesicle formation. Curr Opin Cell Biol 22:36–43PubMedCrossRefGoogle Scholar
  97. Lorente-Rodriguez A, Barlowe C (2011) Requirement for Golgi-localized PI(4)P in fusion of COPII vesicles with Golgi compartments. Mol Biol Cell 22:216–229PubMedCrossRefGoogle Scholar
  98. Mao Y, Nickitenko A, Duan X, Lloyd TE, Wu MN, Bellen H, Quiocho FA (2000) Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100:447–456PubMedCrossRefGoogle Scholar
  99. Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD (1994) The sorting receptor for yeast vacuole carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586PubMedCrossRefGoogle Scholar
  100. Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31:52–63PubMedCrossRefGoogle Scholar
  101. Misra S, Hurley JH (1999) Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97:657–666PubMedCrossRefGoogle Scholar
  102. Mizuno-Yamasaki E, Medkova M, Coleman J, Novick P (2010) Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev Cell 18:828–840PubMedCrossRefGoogle Scholar
  103. Nair U, Cao T, Xie Z, Klionsky DJ (2010) Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 285:11476–11488PubMedCrossRefGoogle Scholar
  104. Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11:1421–1426PubMedCrossRefGoogle Scholar
  105. Nice DC, Sato TK, Stomhaug PE, Emr SD, Klionsky DJ (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277:30198–30207PubMedCrossRefGoogle Scholar
  106. Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858PubMedCrossRefGoogle Scholar
  107. Ojala PJ, Paavilainen V, Lappalainen P (2001) Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry 40:15562–15569PubMedCrossRefGoogle Scholar
  108. Ortiz D, Medkova M, Walch-Solimena C, Novick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157:1005–1015PubMedCrossRefGoogle Scholar
  109. Palmgren S, Ojala PJ, Wear MA, Cooper JA, Lappalainen P (2001) Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol 155:251–260PubMedCrossRefGoogle Scholar
  110. Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA (2005) A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol Cell 17:181–191PubMedCrossRefGoogle Scholar
  111. Parrish WR, Stefan CJ, Emr SD (2004) Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell 15:3567–3579PubMedCrossRefGoogle Scholar
  112. Parrish WR, Stefan CJ, Emr SD (2005) PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway. J Cell Sci 118:5589–5601PubMedCrossRefGoogle Scholar
  113. Peterson MR, Burd CG, Emr SD (1999) Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr Biol 9:159–162PubMedCrossRefGoogle Scholar
  114. Phelan JP, Millson SH, Parker PJ, Piper PW, Cooke FT (2006) Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J Cell Sci 119:4225–4234PubMedCrossRefGoogle Scholar
  115. Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591PubMedCrossRefGoogle Scholar
  116. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:444–452CrossRefGoogle Scholar
  117. Richer SM, Stewart NK, Tomaszewski JW, Stone MJ, Oakley MG (2008) NMR investigation of the binding between human profiling I and inositol 1,4,5-triphosphate, the soluble headgroup of phosphatidylinositol 4,5-bisphosphate. Biochemistry 47:13455–13462PubMedCrossRefGoogle Scholar
  118. Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:1299–1310PubMedCrossRefGoogle Scholar
  119. Roy A, Levine TP (2004) Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J Biol Chem 279:44683–44689PubMedCrossRefGoogle Scholar
  120. Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289PubMedCrossRefGoogle Scholar
  121. Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A (2011) PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev Cell 20:47–59PubMedCrossRefGoogle Scholar
  122. Sato TK, Overduin M, Emr SD (2001) Location, location, location: membrane targeting directed by PX domains. Science 294:1881–1885PubMedCrossRefGoogle Scholar
  123. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91PubMedCrossRefGoogle Scholar
  124. Schulz TA, Prinz WA (2007) Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim Biophys Acta 1771:769–780PubMedCrossRefGoogle Scholar
  125. Sciorra VA, Rudge SA, Wang J, McLaughlin S, Engebrecht J, Morris AJ (2002) Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. J Cell Biol 159:1039–1049PubMedCrossRefGoogle Scholar
  126. Sciorra VA, Audhya A, Parsons AB, Negev N, Boone C, Emr SD (2005) Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 16:776–793PubMedCrossRefGoogle Scholar
  127. Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG, Ferguson KM (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14:523–534PubMedCrossRefGoogle Scholar
  128. Shin ME, Ogburn KD, Varban OA, Gilbert PM, Burd CG (2001) FYVE domain targets Pib1p ubiquitin ligase to endosome and vacuolar membranes. J Biol Chem 276:41388–41393PubMedCrossRefGoogle Scholar
  129. Seet LF, Hong W (2006) The Phox (PX) domain proteins and membrane traffic. Biochim Biophys Acta 1761:878–896PubMedCrossRefGoogle Scholar
  130. Shelton SN, Barylko B, Binns DD, Horazdovsky BF, Albanesi JP, Goodman JM (2003) Saccharomyces cerevisiae contains a Type II phosphoinositide 4-kinase. Biochem J 371:533–540PubMedCrossRefGoogle Scholar
  131. Song X, Xu W, Zhang A, Huang G, Liang X, Virbasius JV, Czech MP, Zhou GW (2001) Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40:8940–8944PubMedCrossRefGoogle Scholar
  132. Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA (1998) A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 273:16635–16638PubMedCrossRefGoogle Scholar
  133. Stack JH, Emr SD (1994) Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269:31552–31562PubMedGoogle Scholar
  134. Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204PubMedGoogle Scholar
  135. Stack JH, Horazdovsky B, Emr SD (1995) Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu Rev Cell Dev Biol 11:1–33PubMedCrossRefGoogle Scholar
  136. Stahelin RV, Long F, Diraviyam K, Bruzik KS, Murray D, Cho W (2002) Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J Biol Chem 277:26379–26388PubMedCrossRefGoogle Scholar
  137. Stahelin RV, Long F, Peter BJ, Murray D, DeCamilli P, McMahon HT, Cho W (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J Biol Chem 278:28993–28999PubMedCrossRefGoogle Scholar
  138. Stefan CJ, Audhya A, Emr SD (2002) The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 13:542–557PubMedCrossRefGoogle Scholar
  139. Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD (2011) Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:1–13CrossRefGoogle Scholar
  140. Stenmark H, Gillooly DJ (2001) Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin Cell Dev Biol 12:193–199PubMedCrossRefGoogle Scholar
  141. Stolz LE, Huynh CV, Thorner J, York JD (1998) Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52, and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 148:1715–1729PubMedGoogle Scholar
  142. Strahl T, Hama H, DeWald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171:967–979PubMedCrossRefGoogle Scholar
  143. Strochlic TI, Setty TG, Sitaram A, Burd CG (2007) Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 177:115–125PubMedCrossRefGoogle Scholar
  144. Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15:3553–3566PubMedCrossRefGoogle Scholar
  145. Sun Y, Kaksonen M, Madden DR, Schekman R, Drubin DG (2005) Interaction of Sla2p’s ANTH domain with PtdIns(4,5)P2 is important for actin-dependent endocytic internalization. Mol Biol Cell 16:717–730PubMedCrossRefGoogle Scholar
  146. Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD (2006) The phosphatidylinositol 4,5-bisphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26:5861–5875PubMedCrossRefGoogle Scholar
  147. Tahirovic S, Schorr M, Mayinger P (2005) Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic 6:116–130PubMedCrossRefGoogle Scholar
  148. Tall CG, Hama H, DeWald DB, Horazdovsky BF (1999) The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vacuolar protein sorting. Mol Biol Cell 10:1873–1889PubMedGoogle Scholar
  149. Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL (2006) ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLLE in linking to ESCRT-I and membranes. Cell 125:99–111PubMedCrossRefGoogle Scholar
  150. Trotter PJ, Wu WI, Pedretti J, Yates R, Voelker DR (1998) A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, STT4p, as an essential component in phosphatidylserine metabolism. J Biol Chem 273:13189–13196PubMedCrossRefGoogle Scholar
  151. Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321:404–407PubMedCrossRefGoogle Scholar
  152. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signaling. Nat Rev Mol Cell Biol 11:329–341PubMedCrossRefGoogle Scholar
  153. Votin V, Allyn T, Thorner J (2009) Binding of PI4,5P2 by septin complexes is required for their essential function in cytokinesis in budding yeast. FASEB J 23:697.5Google Scholar
  154. Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1:523–525PubMedCrossRefGoogle Scholar
  155. Webb GC, Zhang J, Garlow SJ, Wesp A, Riezman H, Jones EW (1997) Pep7p provides a novel protein that functions in vesicle-mediated transport between the yeast Golgi and endosome. Mol Biol Cell 8:871–895PubMedGoogle Scholar
  156. Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9:478–489PubMedCrossRefGoogle Scholar
  157. Wendland B, Emr SD (1998) Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J Cell Biol 141:71–84PubMedCrossRefGoogle Scholar
  158. Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18:4383–4393PubMedCrossRefGoogle Scholar
  159. Wesp A, Hicke L, Palecek J, Lombardi R, Aust T, Munn AL, Riezman H (1997) End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 8:2291–2306PubMedGoogle Scholar
  160. Wild AC, Yu JW, Lemmon MA, Blumer KJ (2004) The p21-activated protein kinase-related kinase Cla4 is a coincidence detector of signaling by Cdc42 and phosphatidylinositol 4-phosphate. J Biol Chem 279:17101–17110PubMedCrossRefGoogle Scholar
  161. Wiradjaja F, Ooms LM, Whisstock JC, McColl B, Heifenbaum L, Sanbrook JF, Gething MJ, Mitchell CA (2001) The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem 276:7643–7653PubMedCrossRefGoogle Scholar
  162. Witke W (2004) The role of profiling complexes in cell motility and other cellular processes. Trends Cell Biol 14:461–469PubMedCrossRefGoogle Scholar
  163. Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187:967–975PubMedCrossRefGoogle Scholar
  164. Wurmser AE, Emr SD (1998) Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 17:4930–4942PubMedCrossRefGoogle Scholar
  165. Wurmser AE, Emr SD (2002) Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol 158:761–772PubMedCrossRefGoogle Scholar
  166. Xu Y, Seet LF, Hanson B, Hong W (2001) The Phox homology (PX) domain, a new player in phosphoinositide signaling. Biochem J 360:513–530PubMedCrossRefGoogle Scholar
  167. Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D (1995) Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6:525–539PubMedGoogle Scholar
  168. Yeung BG, Phan HL, Payne GS (1999) Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 10:3643–3659PubMedGoogle Scholar
  169. Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65:761–789PubMedCrossRefGoogle Scholar
  170. Yoshida S, Bartolini S, Pellman D (2009) Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 23:810–823PubMedCrossRefGoogle Scholar
  171. Yu JW, Lemmon MA (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem 276:44179–44184PubMedCrossRefGoogle Scholar
  172. Yu JW, Mendrola JM, Audhya A, Singh S, Keleti D, DeWald DB, Murray D, Emr SD, Lemmon MA (2004) Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13:677–688PubMedCrossRefGoogle Scholar
  173. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117PubMedCrossRefGoogle Scholar
  174. Zhai C, Li K, Markaki V, Phelan JP, Bowers K, Cooke FT, Panaretou B (2008) Ypp1/YGR198w plays an essential role in phosphoinositide signaling at the plasma membrane. Biochem J 415:455–466PubMedCrossRefGoogle Scholar
  175. Zhang X, Orlando K, He B, Xi F, Zhang J, Zajac A, Guo W (2008) Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol 180:145–158PubMedCrossRefGoogle Scholar
  176. Zhdankina O, Strand NL, Redmond JM, Boman AL (2001) Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18:1–18PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biomolecular ChemistryUniversity of Wisconsin-Madison Medical SchoolMadisonUSA

Personalised recommendations