Defining Signal Transduction by Inositol Phosphates

  • Stephen B. Shears
  • Sindura B. Ganapathi
  • Nikhil A. Gokhale
  • Tobias M. H. Schenk
  • Huanchen Wang
  • Jeremy D. Weaver
  • Angelika Zaremba
  • Yixing Zhou
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 59)

Abstract

Ins(1,4,5)P3 is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca2+ stores. The Ins(1,4,5)P3 response is “switched off” by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling “family”. The validity of that latter definition is critically examined in this review. That is, we assess the strength of the hypothesis that Ins(1,4,5)P3 metabolites are themselves “classical” signals. Put another way, what is the evidence that the biological function of a particular inositol phosphate depends upon stimulus dependent changes in its levels? In this assessment, examples of an inositol phosphate acting as a cofactor (i.e. its function is not stimulus-dependent) do not satisfy our signaling criteria. We conclude that Ins(3,4,5,6)P4 is, to date, the only Ins(1,4,5)P3 metabolite that has been validated to act as a second messenger.

Keywords

Adenosine deaminase AKT b-cells Calcium cAMP CaMKII Chloride channel ClC3 Compartmentalization DNA repair Endosomes ERK Frizzled receptor GAP1IP4BP mRNA export Ins(1,4,5)P3 Ins(1,4,5)P3 receptor Ins(1,3,4)P3 Ins(1,3,4,5)P4 Ins(1,3,4,5)P4 receptor Ins(1,4,5,6)P4 Ins(3,4,5,6)P4 Ins(1,3,4,5,6)P5 InsP6 Insulin IPMK IPK2 IP5K ITP ITPK1 ITPKB Lymphocytes Ku Neutrophils Protein phosphatase PtdIns(4,5)P2 PtdIns(3,4,5)P3 PH domain PTEN RASA3 Transcription Wnt ligand 

References

  1. Alcázar-Román AR, Tran EJ, Guo S, Wente SR (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8:645–647CrossRefGoogle Scholar
  2. Ali N, Craxton A, Shears SB (1993) Hepatic Ins(1,3,4,5)P4 3-phosphatase is compartmentalized inside endoplasmic reticulum. J Biol Chem 268:6161–6167PubMedGoogle Scholar
  3. Balla T, Guillemette G, Baukal AJ, Catt KJ (1987) Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun 146:199–205CrossRefGoogle Scholar
  4. Barg S, Huang P, Eliasson L, Nelson DJ, Obermüller S, Rorsman P, Thévenod F, Renström E (2001) Priming of insulin granules for exocytosis by granular chloride uptake and acidification. J Cell Sci 114:2145–2154PubMedGoogle Scholar
  5. Barker CJ, Wong NS, Maccallum SM, Hunt PA, Michell RH, Kirk CJ (1992) The interrelationships of the inositol phosphates formed in WRK-1 stimulated rat mammary tumour cells. Biochem J 286:469–474PubMedGoogle Scholar
  6. Barker CJ, Leibiger IB, Leibiger B, Berggren PO (2002) Phosphorylated inositol compounds in beta -cell stimulus-response coupling. Am J Physiol Endocrinol Metab 283:E1113–E1122PubMedGoogle Scholar
  7. Barker CJ, Wright J, Hughes PJ, Kirk CJ, Michell RH (2004) Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. Biochem J 380:465–473PubMedCrossRefGoogle Scholar
  8. Batty IH, Downes CP (1994) The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediated phospholipase C activity by Li+ as secondary selective consequences of inositol depletion in 1321N1 cells. Biochem J 297:529–537PubMedGoogle Scholar
  9. Batty IH, Nahorski SR, Irvine RF (1985) Rapid formation of inositol 1,3,4-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 232:211–215PubMedGoogle Scholar
  10. Batty IH, Currie RA, Downes CP (1998) Evidence for a model of integrated inositol phospholipid pools implies an essential role for lipid transport in the maintenance of receptor-mediated phospholipase C activity in 1321N1 cells. Biochem J 330:1069–1077PubMedGoogle Scholar
  11. Becker PB, Hörz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273PubMedCrossRefGoogle Scholar
  12. Berggren PO, Barker CJ (2008) A key role for phosphorylated inositol compounds in pancreatic beta-cell stimulus-secretion coupling. Adv Enzyme Regul 48:276–294PubMedCrossRefGoogle Scholar
  13. Bird GStJ, Putney JW Jr (1996) Effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-activated Ca2+ signaling in mouse lacrimal acinar cells. J Biol Chem 271:6766–6770PubMedCrossRefGoogle Scholar
  14. Bird GStJ, Rossier MF, Hughes AR, Shears SB, Armstrong DL, Putney JW Jr (1991) Activation of calcium entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature 352:162–165PubMedCrossRefGoogle Scholar
  15. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  16. Boynton AL, Dean NM, Hill TD (1990) Inositol 1,3,4,5-tetrakisphosphate and regulation of intracellular calcium. Biochem Pharmacol 40:1933–1939PubMedCrossRefGoogle Scholar
  17. Brehm MA, Schenk TM, Zhou X, Fanick W, Lin H, Windhorst S, Nalaskowski MM, Kobras M, Shears SB, Mayr GW (2007) Intracellular localization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase. Biochem J 408:335–345PubMedCrossRefGoogle Scholar
  18. Brough D, Bhatti F, Irvine RF (2005) Mobility of proteins associated with the plasma membrane by interaction with inositol lipids. J Cell Sci 118:3019–3025PubMedCrossRefGoogle Scholar
  19. Bunce CM, French PJ, Allen P, Mountford JC, Moor B, Greaves MF, Michell RH, Brown G (1993) Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts. Biochem J 289:667–673PubMedGoogle Scholar
  20. Caffrey JJ, Darden T, Wenk MR, Shears SB (2001) Expanding Coincident Signaling by PTEN through its Inositol 1,3,4,5,6-Pentakisphosphate 3-phosphatase Activity. FEBS Lett 499:6–10PubMedCrossRefGoogle Scholar
  21. Carew MA, Yang X, Schultz C, Shears SB (2000) Ins(3,4,5,6)P4 inhibits an apical calcium-activated chloride conductance in polarized monolayers of a cystic fibrosis cell-line. J Biol Chem 275:26906–26913PubMedGoogle Scholar
  22. Chamberlain PP, Qian X, Stiles AR, Cho J, Jones DH, Lesley SA, Grabau EA, Shears SB, Spraggon G (2007) Integration of inositol phosphate signaling pathways via human ITPK1. J Biol Chem 282:28117–28125PubMedCrossRefGoogle Scholar
  23. Changya L, Gallacher DV, Irvine RF, Potter BVL, Petersen OH (1989) Inositol 1,3,4,5-trisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused lacrimal cells. J Membr Biol 109:85–93PubMedCrossRefGoogle Scholar
  24. Cheung JC, Salerno B, Hanakahi LA (2008) Evidence for an inositol hexakisphosphate-dependent role for Ku in mammalian nonhomologous end joining that is independent of its role in the DNA-dependent protein kinase. Nucleic Acids Res 36:5713–5726PubMedCrossRefGoogle Scholar
  25. Chi H, Yang X, Kingsley PD, O’Keefe RJ, Puzas JE, Rosier RN, Shears SB, Reynolds PR (2000) Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol 20:6496–6507PubMedCrossRefGoogle Scholar
  26. Claud EC, Lu J, Wang XQ, Abe M, Petrof EO, Sun J, Nelson DJ, Marks JD, Jilling T (2008) Platelet-activating Factor induced chloride channel activation is associated with intracellular acidosis and apoptosis of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 294, G1191-G1200PubMedCrossRefGoogle Scholar
  27. Cooke F, Poyner DR, Hawkins P, Erlebach C, Hanley MR (1991) Inositol hexakisphosphate-membranes interactions: the role of metal ions. Biochem Soc Trans 19:152sGoogle Scholar
  28. Cozier GE, Lockyer PJ, Reynolds JS, Kupzig S, Bottomley JR, Millard TH, Banting G, Cullen PJ (2000) GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 275:28261–28628PubMedGoogle Scholar
  29. Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB (1997) Cloning and expression of rat hepatic multiple inositol polyphosphate phosphatase. Biochem J 328:75–81PubMedGoogle Scholar
  30. Crossley I, Swann K, Chambers E, Whitaker M (1988) Activation of sea urchin eggs by inositol phosphates is independent of external calcium. Biochem J 252:257–262PubMedGoogle Scholar
  31. Cuddapah VA, Sontheimer H (2010) Molecular interaction and functional regulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma. J Biol Chem 285:11188–11196PubMedCrossRefGoogle Scholar
  32. Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF (1995) Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 376:527–530PubMedCrossRefGoogle Scholar
  33. Dubois E, Dewaste V, Erneux C, Messenguy F (2000) Inositol polyphosphate kinase activity of Arg82/ArgRIII is not required for the regulation of the arginine metabolism in yeast. FEBS Lett 486:300–304PubMedCrossRefGoogle Scholar
  34. Eckmann L, Rudolf MT, Ptasznik A, Schultz C, Jiang T, Wolfson N, Tsien R, Fierer J, Shears SB, Kagnoff MF, Traynor-Kaplan A (1997) D-myo-inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc Natl Acad Sci U S A 94:14456–14460PubMedCrossRefGoogle Scholar
  35. El Alami M, Messenguy F, Scherens B, Dubois E (2003) Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol Microbiol 49:457–468Google Scholar
  36. Frederick JP, Mattiske D, Wofford JA, Megosh LC, Drake LY, Chiou ST, Hogan BL, York JD (2005) An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc Natl Acad Sci U S A 102:8454–8459PubMedCrossRefGoogle Scholar
  37. Gao Y, Wang HY (2007) Inositol Pentakisphosphate Mediates Wnt/beta-Catenin Signaling. J Biol Chem 282:26490–26502PubMedCrossRefGoogle Scholar
  38. Gentzsch M, Cui L, Mengos A, Chang XB, Chen JH, Riordan JR (2003) The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J Biol Chem 278:6440–6449PubMedCrossRefGoogle Scholar
  39. Guse AH, Greiner E, Emmrich F, Brand K (1993) Mass changes of inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate during cell cycle progression in rat thymocytes. J Biol Chem 268:7129–7133PubMedGoogle Scholar
  40. Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS (2005) ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280:1241–1247PubMedCrossRefGoogle Scholar
  41. Hermosura MC, Takeuchi H, Fleig A, Riley AQM, Potter BVL, Hirata M, Penner R (2000) InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature 408:735–740PubMedCrossRefGoogle Scholar
  42. Hernandez LD, Hueffer K, Wenk MR, Galan JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807PubMedCrossRefGoogle Scholar
  43. Heslop JP, Irvine RF, Tashjian AH, Berridge MJ (1985) Inositol tetrakis- and pentakisphosphates in GH4 cells. J Exp Biol 119:395–401PubMedGoogle Scholar
  44. Hill TD, Dean NM, Boynton AL (1988) Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells. Science 242:1176–1178PubMedCrossRefGoogle Scholar
  45. Ho MWY, Shears SB (2002) Regulation of calcium-activated chloride channels by inositol 3,4,5,6-tetrakisphosphate. In: Fuller CM (ed) Current topics in membranes, 53. Academic Press, London, pp 345–363Google Scholar
  46. Ho MWY, Carew MA, Yang X, Shears SB (2000) Regulation of chloride channel conductance by Ins(3,4,5,6)P4; a phosphoinositide-initiated signalling pathway that acts downstream of Ins(1,4,5)P3. In: Cockroft S (ed) Frontiers in molecular biology: biology of phosphoinositides. Oxford University Press, Oxford, pp 298–319Google Scholar
  47. Ho MWY, Kaetzel MA, Armstrong DL, Shears SB (2001) Regulation of a human chloride channel: a paradigm for integrating input from calcium, CaMKII and Ins(3,4,5,6)P4. J Biol Chem 276:18673–18680PubMedCrossRefGoogle Scholar
  48. Ho MWY, Yang X, Carew MA, Zhang T, Hua L, Kwon Y-U, Chung S-K, Adelt S, Vogel G, Riley AM, Potter BVL, Shears SB (2002) Regulation of Ins(3456)P4 signaling by a reversible kinase/phosphatase. Curr Biol 12:477–482PubMedCrossRefGoogle Scholar
  49. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356PubMedCrossRefGoogle Scholar
  50. Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S, Andreotti AH, Tsoukas CD, Cooke MP, Sauer K (2007) Positive regulation of Itk PH domain function by soluble IP4. Science 316:886–889PubMedCrossRefGoogle Scholar
  51. Irvine RF (1986) Calcium transients: mobilization of intracellular Ca2+. Br Med Bull 42:369–374PubMedGoogle Scholar
  52. Irvine RF (1992) Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? In: Putney JW Jr (ed) Advances in second messenger and phosphoprotein research. Raven Press, New York, pp 161–185Google Scholar
  53. Irvine RF, Moor RM (1986) Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240:917–920PubMedGoogle Scholar
  54. Irvine RF, Moor RM (1987) Inositol(1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate. Biochem Biophys Res Commun 146:284–290PubMedCrossRefGoogle Scholar
  55. Irvine RF, Schell M (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338PubMedCrossRefGoogle Scholar
  56. Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphosphate pathway—demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature 320:631–634PubMedCrossRefGoogle Scholar
  57. Irvine RF, Lloyd-Burton SM, Yu JC, Letcher AJ, Schell MJ (2006) The regulation and function of inositol 1,4,5-trisphosphate 3-kinases. Adv Enzyme Regul 46:314–323PubMedCrossRefGoogle Scholar
  58. Ismailov II, Fuller CM, Berdiev BK, Shlyonsky VG, Benos DJ, Barrett KE (1996) A biologic function for an “orphan” messenger: D-myo-Inositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride current. Proc Nat Acad Sci U S A 93:10505–10509CrossRefGoogle Scholar
  59. Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36PubMedCrossRefGoogle Scholar
  60. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568PubMedGoogle Scholar
  61. Jia Y, Subramanian KK, Erneux C, Pouillon V, Hattori H, Jo H, You J, Zhu D, Schurmans S, Luo HR (2007) Inositol 1,3,4,5-tetrakisphosphate negatively regulates phosphatidylinositol-3,4,5- trisphosphate signaling in neutrophils. Immunity 27:453–467PubMedCrossRefGoogle Scholar
  62. Jia Y, Loison F, Hattori H, Li Y, Erneux C, Park SY, Gao C, Chai L, Silberstein LE, Schurmans S, Luo HR (2008) Inositol trisphosphate 3-kinase B (InsP3KB) as a physiological modulator of myelopoiesis. Proc Natl Acad Sci U S A 105:4739–4744PubMedCrossRefGoogle Scholar
  63. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and Promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508PubMedCrossRefGoogle Scholar
  64. Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter DC, Safrany ST, Alessi DR, Aalten DM van (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928PubMedCrossRefGoogle Scholar
  65. Larsson O, Barker CJ, Sj-oholm A, Carlqvist H, Michell RH, Bertorello A, Nilsson T, Honkanen RE, Mayr GW, Zwiller J, Berggren PO (1997) Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science 278:471–474PubMedCrossRefGoogle Scholar
  66. Leyman A, Pouillon V, Bostan A, Schurmans S, Erneux C, Pesesse X (2007) The absence of expression of the three isoenzymes of the inositol 1,4,5-trisphosphate 3-kinase does not prevent the formation of inositol pentakisphosphate and hexakisphosphate in mouse embryonic fibroblasts. Cell Signal 19:1497–1504PubMedCrossRefGoogle Scholar
  67. Li W, Schultz C, Llopis J, Tsien RY (1997) Membrane-permeant esters of inositol polyphosphates, chemical synthesis and biological applications. Tetrahedron 53:12017–12040CrossRefGoogle Scholar
  68. Loomis-Husselbee JW, Cullen PJ, Dreikausen UE, Irvine RF, Dawson AP (1996) Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-trisphosphate-stimulated Ca2+ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol trisphosphate binding sites. Biochem J 314:811–816PubMedGoogle Scholar
  69. Luckhoff A, Clapham DE (1992) Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 355:356–358PubMedCrossRefGoogle Scholar
  70. Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309:1534–1539PubMedCrossRefGoogle Scholar
  71. Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob TJ, Wang L (2008) Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 75:1706–1716PubMedCrossRefGoogle Scholar
  72. Marechal Y, Pesesse X, Jia Y, Pouillon V, Perez-Morga D, Daniel J, Izui S, Cullen PJ, Leo O, Luo HR, Erneux C, Schurmans S (2007) Inositol 1,3,4,5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells. Proc Natl Acad Sci U S A 104:13978–13983PubMedCrossRefGoogle Scholar
  73. Mattingly RR, Stephens LR, Irvine RF, Garrison JC (1991) Effects of transformation with the v-src oncogene on inositol phosphate metabolism in rat-1 fibroblasts: D-myo-inositol 1,4,5,6-tetrakisphosphate is increased in v-src transformed rat-1 fibroblasts and can be synthesised from d-myo-inositol 1,3,4-trisphosphate in cytosolic extracts. J Biol Chem 266:15144–15153PubMedGoogle Scholar
  74. McKnight S (2003) Gene switching by metabolic enzymes—how did you get on the invitation list? Cell 174:150–152CrossRefGoogle Scholar
  75. Menniti FS, Oliver KG, Nogimori K, Obie JF, Shears SB, Putney JW Jr (1990) Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate. J Biol Chem 265:11167–11176PubMedGoogle Scholar
  76. Menniti FS, Miller RN, Putney JW Jr, Shears SB (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268:3850–3856PubMedGoogle Scholar
  77. Michell RH, King CE, Piper CJ, Stephens LR, Bunce CM, Guy GR, Brown G (1988) Inositol lipids and phosphates in erythrocytes and HL60 cells. J Gen Physiol 43:345–355Google Scholar
  78. Miller GJ, Wilson MP, Majerus PW, Hurley JH (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-trisphosphate 5/6-kinase. Mol Cell 18:201–212PubMedCrossRefGoogle Scholar
  79. Miller AT, Sandberg M, Huang YH, Young M, Sutton S, Sauer K, Cooke MP (2007) Production of Ins(1,3,4,5)P4 mediated by the kinase Itpkb inhibits store-operated calcium channels and regulates B cell selection and activation. Nat Immunol 8:514–521PubMedCrossRefGoogle Scholar
  80. Miller AT, Beisner DR, Liu D, Cooke MP (2009) Inositol 1,4,5-trisphosphate 3-kinase B is a negative regulator of BCR signaling that controls B cell selection and tolerance induction. J Immunol 182:4696–4704PubMedCrossRefGoogle Scholar
  81. Mitchell J, Wang X, Zhang G, Gentzsch M, Nelson DJ, Shears SB (2008) An Expanded Biological Repertoire for Ins(3,4,5,6)P(4) through its Modulation of ClC-3 Function. Curr Biol 18:1600–1605PubMedCrossRefGoogle Scholar
  82. Monserrate JP, York JD (2010) Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 22:365–373PubMedCrossRefGoogle Scholar
  83. Morris AP, Gallacher DV, Irvine RF, Petersen OH (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 330:653–655PubMedCrossRefGoogle Scholar
  84. Nagy R, Grob H, Weder B, Green P, Klein M, Frelet A, Schjoerring JK, Brearley CA, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein ATMRP5/ATABCC5 is a high-affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622Google Scholar
  85. Nalaskowski MM, Deschermeier C, Fanick W, Mayr GW (2002) The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization. Biochem J 366:549–556PubMedCrossRefGoogle Scholar
  86. Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39:122–133PubMedCrossRefGoogle Scholar
  87. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103PubMedCrossRefGoogle Scholar
  88. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW (1998) SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 95:14057–14059PubMedCrossRefGoogle Scholar
  89. Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029PubMedCrossRefGoogle Scholar
  90. Oliver KG, Putney JW Jr, Obie JF, Shears SB (1992) The interconversion of inositol 1,3,4,5,6-pentakisphosphate and inositol tetrakisphosphates in AR4–2J cells. J Biol Chem 267:21528–21534PubMedGoogle Scholar
  91. Otto JC, Kelly P, Chiou ST, York JD (2007) Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases. Proc Natl Acad Sci U S A 104:15653–15658PubMedCrossRefGoogle Scholar
  92. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMedGoogle Scholar
  93. Pittet D, Schlegel W, Lew DP, Monod A, Mayr GW (1989) Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J Biol Chem 264:18489–18493PubMedGoogle Scholar
  94. Pouillon V, Hascakova-Bartova R, Pajak B, Adam E, Bex F, Dewaste V, Van Lint C, Leo O, Erneux C, Schurmans S (2003) Inositol 1,3,4,5-tetrakisphophate is essential for T lymphocyte development. Nat Immunol 4:1136–1143PubMedCrossRefGoogle Scholar
  95. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12PubMedCrossRefGoogle Scholar
  96. Putney JW Jr (1992) Inositol phosphates and calcium entry. In: Putney JW (ed) Advances in second messenger and phosphoprotein research. Raven Press, New York, pp 143–160Google Scholar
  97. Qi Q, August A (2009) The Tec family kinase Itk exists as a folded monomer in vivo. J Biol Chem 284:29882–29892PubMedCrossRefGoogle Scholar
  98. Qi Q, Sahu N, August A (2006) Tec kinase Itk forms membrane clusters specifically in the vicinity of recruiting receptors. J Biol Chem 281:38529–38534PubMedCrossRefGoogle Scholar
  99. Quignard JF, Rakotoarisoa L, Mironneau J, Mironneau C (2003) Stimulation of L-type Ca2+ channels by inositol pentakis- and hexakisphosphates in rat vascular smooth muscle cells. J Physiol 549:729–737PubMedCrossRefGoogle Scholar
  100. Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076PubMedGoogle Scholar
  101. Renström E, Ivarsson R, Shears SB (2002) Ins(3,4,5,6)P4 inhibits insulin granule acidification and fusogenic potential. J Biol Chem 277:26717–26720PubMedCrossRefGoogle Scholar
  102. Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174PubMedCrossRefGoogle Scholar
  103. Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 1804:499–504PubMedCrossRefGoogle Scholar
  104. Saiardi A (2011) Phosphoinositides and inositol phosphatesGoogle Scholar
  105. Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 468:28–32PubMedCrossRefGoogle Scholar
  106. Saiardi A, Nagata E, Luo HR, Sawa A, Luo X, Snowman AM, Snyder SH (2001) Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc Natl Acad Sci U S A 98:2306–2311PubMedCrossRefGoogle Scholar
  107. Sakaguchi R, Tainaka K, Shimada N, Nakano S, Inoue M, Kiyonaka S, Mori Y, Morii T (2010) An in vivo fluorescent sensor reveals intracellular ins(1,3,4,5)P4 dynamics in single cells. Angew Chem Int Ed Engl 49:2150–2153PubMedCrossRefGoogle Scholar
  108. Sarmah B, Wente SR (2010) Inositol hexakisphosphate kinase-2 acts as an effector of the vertebrate Hedgehog pathway. Proc Natl Acad Sci U S A 107:19921–19926PubMedCrossRefGoogle Scholar
  109. Sarmah B, Latimer AJ, Appel B, Wente SR (2005) Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 9:133–145PubMedCrossRefGoogle Scholar
  110. Sauer K, Cooke MP (2010) Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol 10:257–271PubMedCrossRefGoogle Scholar
  111. Schell MJ (2010) Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 67:1755–1778Google Scholar
  112. Schell MJ, Irvine RF (2006) Calcium-triggered exit of F-actin and IP(3) 3-kinase A from dendritic spines is rapid and reversible. Eur J Neurosci 24:2491–2503PubMedCrossRefGoogle Scholar
  113. Seeds AM, Sandquist JC, Spana EP, York JD (2004) A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J Biol Chem 279:47222–47232Google Scholar
  114. Shears SB (1989) Metabolism of the inositol phosphates produced by receptor activation. Biochem J 260:313–324PubMedGoogle Scholar
  115. Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280PubMedCrossRefGoogle Scholar
  116. Shears SB, Parry JB, Tang EKY, Irvine RF, Michell RH, Kirk CJ (1987) Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate. Biochem J 246:139–147PubMedGoogle Scholar
  117. Shen X, Xiao H, Ranallo R, Wu W-H, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114PubMedCrossRefGoogle Scholar
  118. Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937PubMedCrossRefGoogle Scholar
  119. Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413PubMedCrossRefGoogle Scholar
  120. Smith PM, Harmer AR, Letcher AJ, Irvine RF (2000) The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal cells. Biochem J 347:77–82PubMedCrossRefGoogle Scholar
  121. Solyakov L, Cain K, Tracey BM, Jukes R, Riley AM, Potter BV, Tobin AB (2004) Regulation of casein kinase-2 (CK2) activity by inositol phosphates. J Biol Chem279:43403–43410Google Scholar
  122. Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299:114–116PubMedCrossRefGoogle Scholar
  123. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bösl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of hippocampus. Neuron 29:185–196PubMedCrossRefGoogle Scholar
  124. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306:67–68PubMedCrossRefGoogle Scholar
  125. Stuart JA, Anderson KL, French PJ, Kirk CJ, Michell RH (1994) The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells. Biochem J 303:517–525PubMedGoogle Scholar
  126. Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091PubMedGoogle Scholar
  127. Taylor C (2011) Phosphoinositides and inositol phosphatesGoogle Scholar
  128. Vajanaphanich M, Schultz C, Rudolf MT, Wasserman M, Enyedi P, Craxton A, Shears SB, Tsien RY, Barrett KE, Traynor-Kaplan AE (1994) Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371:711–714PubMedCrossRefGoogle Scholar
  129. Vallejo M, Jackson T, Lightman S, Hanley MR (1987) Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature 330:656–658PubMedCrossRefGoogle Scholar
  130. Verbsky J, Lavine K, Majerus PW (2005a) Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression. Proc Natl Acad Sci U S A 102:8448–8453CrossRefGoogle Scholar
  131. Verbsky JW, Chang SC, Wilson MP, Mochizuki Y, Majerus PW (2005b) The pathway for the production of inositol hexakisphosphate in human cells. J Biol Chem 280:1911–1920CrossRefGoogle Scholar
  132. Volk AP, Heise CK, Hougen JL, Artman CM, Volk KA, Wessels D, Soll DR, Nauseef WM, Lamb FS, Moreland JG (2008) ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem 283:34315–34326PubMedCrossRefGoogle Scholar
  133. von Zastrow M, Sorkin A (2007) Signaling on the endocytic pathway. Curr Opin Cell Biol 19:436–445PubMedCrossRefGoogle Scholar
  134. Walker SA, Kupzig S, Lockyer PJ, Bilu S, Zharhary D, Cullen PJ (2002) Analysing the role of the putative inositol 1,3,4,5-tetrakisphosphate receptor GAP1IP4BP in intracellular Ca2+ homeostasis. J Biol Chem 277:48779–48785PubMedCrossRefGoogle Scholar
  135. Wang XQ, Deriy LV, Foss S, Huang P, Lamb FS, Kaetzel MA, Bindokas V, Marks JD, Nelson DJ (2006) CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons. Neuron 52:321–333PubMedCrossRefGoogle Scholar
  136. Wilson MP, Hugge C, Bielinska M, Nicholas P, Majerus PW, Wilson DB (2009) Neural tube defects in mice with reduced levels of inositol 1,3,4-trisphosphate 5/6-kinase. Proc Natl Acad Sci U S A 106:9831–9835Google Scholar
  137. Xie W, Kaetzel MA, Bruzik KS, Dedman JR, Shears SB, Nelson DJ (1996) Inositol 3,4,5,6-tetrakisphosphate inhibits the calmodulin-dependent protein kinase II-activated chloride conductance inT84 colonic epithelial cells. J Biol Chem 271:14092–14097PubMedCrossRefGoogle Scholar
  138. Xie W, Solomons KRH, Freeman S, Kaetzel MA, Bruzik KS, Nelson DJ, Shears SB (1998) Regulation of Ca2+-dependent Cl- conductance in T84 cells: cross-talk between Ins(3,4,5,6)P4 and protein phosphatases. J Physiol (Lond) 510:661–673CrossRefGoogle Scholar
  139. Yang L, Reece JM, Cho J, Bortner CD, Shears SB (2008) The nucleolus exhibits an osmotically regulated gatekeeping activity that controls the spatial dynamics and functions of nucleolin. J Biol Chem 283:11823–11831PubMedCrossRefGoogle Scholar
  140. York JD (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 1761:552–559PubMedCrossRefGoogle Scholar
  141. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100PubMedCrossRefGoogle Scholar
  142. York JD, Guo S, Odom AR, Spiegelberg BD, Stolz LE (2001) An expanded view of inositol signaling. Adv Enzyme Regul 41:57–71PubMedCrossRefGoogle Scholar
  143. Yu X, Duan KL, Shang CF, Yu HG, Zhou Z (2004) Calcium influx through hyperpolarization-activated cation channels (I(h) channels) contributes to activity-evoked neuronal secretion. Proc Natl Acad Sci U S A 101:1051–1056PubMedCrossRefGoogle Scholar
  144. Zaccolo M, Di BG, Lissandron V, Mancuso L, Terrin A, Zamparo I (2006) Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signalling. Biochem Soc Trans 34:495–497PubMedCrossRefGoogle Scholar
  145. Zhao Z, Li X, Hao J, Winston JH, Weinman SA (2007) The ClC-3 chloride transport protein traffics through the plasma membrane via interaction of an N-terminal dileucine cluster with clathrin. J Biol Chem 282:29022–29031PubMedCrossRefGoogle Scholar
  146. Zhou D, Chen L-M, Hernandez L, Shears SB, Galán JE (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host-cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–259PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stephen B. Shears
    • 1
  • Sindura B. Ganapathi
    • 1
  • Nikhil A. Gokhale
    • 1
  • Tobias M. H. Schenk
    • 1
  • Huanchen Wang
    • 1
  • Jeremy D. Weaver
    • 1
  • Angelika Zaremba
    • 1
  • Yixing Zhou
    • 1
  1. 1.Inositol Signaling SectionLaboratory of Signal Transduction, NIEHS, NIH, DHHS, Research Triangle ParkUSAUSA

Personalised recommendations