Phosphoinositide Phosphatases: Just as Important as the Kinases

  • Jennifer M. Dyson
  • Clare G. Fedele
  • Elizabeth M. Davies
  • Jelena Becanovic
  • Christina A. MitchellEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 58)


Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P2, or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P2. 5-phosphatases also hydrolyze PtdIns(4,5)P2 forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P2 to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P2 to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.


Inositol polyphosphate 5-phosphatases Inositol polyphosphate 4-phosphatases Sac phosphatases Trafficking Hematopoietic system 


  1. Adayev T, Chen-Hwang MC, Murakami N, Wang R, Hwang YW (2006) MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem Biophys Res Commun 351:1060–1065PubMedCrossRefGoogle Scholar
  2. Addis M, Loi M, Lepiani C, Cau M, Melis MA (2004) OCRL mutation analysis in Italian patients with Lowe syndrome. Hum Mutat 23:524–525PubMedCrossRefGoogle Scholar
  3. Ahn SJ, Han SJ, Mo HJ, Chung JK, Hong SH, Park TK, Kim CG (1998) Interaction of phospholipase C gamma 1 via its COOH-terminal SRC homology 2 domain with synaptojanin. Biochem Biophys Res Commun 244:62–67PubMedCrossRefGoogle Scholar
  4. Ai J, Maturu A, Johnson W, Wang Y, Marsh CB, Tridandapani S (2006) The inositol phosphatase SHIP-2 down-regulates FcgammaR-mediated phagocytosis in murine macrophages independently of SHIP-1. Blood 107:813–820PubMedCrossRefGoogle Scholar
  5. Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11:3094–3101PubMedCrossRefGoogle Scholar
  6. Alinikula J, Kohonen P, Nera KP, Lassila O (2010) Concerted action of Helios and Ikaros controls the expression of the inositol 5-phosphatase SHIP. Eur J Immunol 40:2599–2607PubMedCrossRefGoogle Scholar
  7. Allaoui A, Menard R, Sansonetti PJ, Parsot C (1993) Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect Immun 61:1707–1714PubMedGoogle Scholar
  8. Allione F, Eisinger F, Parc P, Noguchi T, Sobol H, Birnbaum D (1998) Loss of heterozygosity at loci from chromosome arm 22Q in human sporadic breast carcinomas. Int J Cancer 75:181–186PubMedCrossRefGoogle Scholar
  9. Antignano F, Ibaraki M, Kim C, Ruschmann J, Zhang A, Helgason CD, Krystal G (2010) SHIP is required for dendritic cell maturation. J Immunol 184:2805–2813PubMedCrossRefGoogle Scholar
  10. Aoki K, Nakamura T, Inoue T, Meyer T, Matsuda M (2007) An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor-stimulated PC12 cells. J Cell Biol 177:817–827PubMedCrossRefGoogle Scholar
  11. Arai Y, Ijuin T, Takenawa T, Becker LE, Takashima S (2002) Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev 24:67–72PubMedCrossRefGoogle Scholar
  12. Asano T, Mochizuki Y, Matsumoto K, Takenawa T, Endo T (1999) Pharbin, a novel inositol polyphosphate 5-phosphatase, induces dendritic appearances in fibroblasts. Biochem Biophys Res Commun 261:188–195PubMedCrossRefGoogle Scholar
  13. Astle MV, Horan KA, Ooms LM, Mitchell CA (2007) The inositol polyphosphate 5-phosphatases: traffic controllers, waistline watchers and tumour suppressors? Biochem Soc Symp 74:161–181PubMedCrossRefGoogle Scholar
  14. Attree O, Olivos IM, Okabe I, Bailey LC, Nelson DL, Lewis RA, McInnes RR, Nussbaum RL (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242PubMedCrossRefGoogle Scholar
  15. Bai L, Rohrschneider LR (2010) s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev 24:1882–1892PubMedCrossRefGoogle Scholar
  16. Bakowski MA, Braun V, Lam GY, Yeung T, Heo WD, Meyer T, Finlay BB, Grinstein S, Brumell JH (2010) The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7:453–462PubMedCrossRefGoogle Scholar
  17. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845PubMedCrossRefGoogle Scholar
  18. Bansal V, Inhorn R, Majerus P (1987) The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate. J Biol Chem 262:9444–9447PubMedGoogle Scholar
  19. Bansal V, Caldwell K, Majerus P (1990) The isolation and characterization of inositol polyphosphate 4-phosphatase. J Biol Chem 265:1806–1811PubMedGoogle Scholar
  20. Baran CP, Tridandapani S, Helgason CD, Humphries RK, Krystal G, Marsh CB (2003) The inositol 5′-phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony-stimulating factor-induced Akt activity. J Biol Chem 278:38628–38636PubMedCrossRefGoogle Scholar
  21. Barber MA, Donald S, Thelen S, Anderson KE, Thelen M, Welch HC (2007) Membrane translocation of P-Rex1 is mediated by G protein betagamma subunits and phosphoinositide 3-kinase. J Biol Chem 282:29967–29976PubMedCrossRefGoogle Scholar
  22. Barnache S, Le Scolan E, Kosmider O, Denis N, Moreau-Gachelin F (2006) Phosphatidylinositol 4-phosphatase type II is an erythropoietin-responsive gene. Oncogene 25:1420–1423PubMedCrossRefGoogle Scholar
  23. Bauerfeind R, Takei K, De Camilli P (1997) Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem 272:30984–30992PubMedCrossRefGoogle Scholar
  24. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8:816–824PubMedGoogle Scholar
  25. Bento JL, Palmer ND, Zhong M, Roh B, Lewis JP, Wing MR, Pandya H, Freedman BI, Langefeld CD, Rich SS, Bowden DW, Mychaleckyj JC (2008) Heterogeneity in gene loci associated with type 2 diabetes on human chromosome 20q13.1. Genomics 92:226–234PubMedCrossRefGoogle Scholar
  26. Bernard DJ, Nussbaum RL (2010) X-inactivation analysis of embryonic lethality in Ocrl wt/-; Inpp5b-/- mice. Mamm Genome 21:186–194PubMedCrossRefGoogle Scholar
  27. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205PubMedCrossRefGoogle Scholar
  28. Bertelli DF, Araujo EP, Cesquini M, Stoppa GR, Gasparotto-Contessotto M, Toyama MH, Felix JV, Carvalheira JB, Michelini LC, Chiavegatto S, Boschero AC, Saad MJ, Lopes-Cendes I, Velloso LA (2006) Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits inositide trisphosphate accumulation in hypothalamus and regulates food intake and body weight. Endocrinology 147:5385–5399PubMedCrossRefGoogle Scholar
  29. Bertoletti A, Gehring A (2007) Immune response and tolerance during chronic hepatitis B virus infection. Hepatol Res 37(Suppl 3):S331–S338PubMedCrossRefGoogle Scholar
  30. Biegel JA, Burk CD, Barr FG, Emanuel BS (1992) Evidence for a 17p tumor related locus distinct from p53 in pediatric primitive neuroectodermal tumors. Cancer Res 52:3391–3395PubMedGoogle Scholar
  31. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036PubMedCrossRefGoogle Scholar
  32. Bisgaard AM, Kirchhoff M, Nielsen JE, Brandt C, Hove H, Jepsen B, Jensen T, Ullmann R, Skovby F (2007) Transmitted cytogenetic abnormalities in patients with mental retardation: pathogenic or normal variants? Eur J Med Genet 50:243–255PubMedCrossRefGoogle Scholar
  33. Blagoveshchenskaya A, Cheong FY, Rohde HM, Glover G, Knodler A, Nicolson T, Boehmelt G, Mayinger P (2008) Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol 180:803–812PubMedCrossRefGoogle Scholar
  34. Bokenkamp A, Bockenhauer D, Cheong HI, Hoppe B, Tasic V, Unwin R, Ludwig M (2009) Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr 155:94–99PubMedCrossRefGoogle Scholar
  35. Bond J, Scott S, Hampshire DJ, Springell K, Corry P, Abramowicz MJ, Mochida GH, Hennekam RC, Maher ER, Fryns JP, Alswaid A, Jafri H, Rashid Y, Mubaidin A, Walsh CA, Roberts E, Woods CG (2003) Protein-truncating mutations in ASPM cause variable reduction in brain size. Am J Hum Genet 73:1170–1177PubMedCrossRefGoogle Scholar
  36. Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286PubMedCrossRefGoogle Scholar
  37. Boyle EC, Brown NF, Finlay BB (2006) Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol 8:1946–1957PubMedCrossRefGoogle Scholar
  38. Brauweiler A, Tamir I, Dal Porto J, Benschop RJ, Helgason CD, Humphries RK, Freed JH, Cambier JC (2000a) Differential regulation of B cell development, activation, and death by the src homology 2 domain-containing 5′ inositol phosphatase (SHIP). J Exp Med 191:1545–1554CrossRefGoogle Scholar
  39. Brauweiler AM, Tamir I, Cambier JC (2000b) Bilevel control of B-cell activation by the inositol 5-phosphatase SHIP. Immunol Rev 176:69–74CrossRefGoogle Scholar
  40. Brauweiler A, Merrell K, Gauld SB, Cambier JC (2007) Cutting edge: acute and chronic exposure of immature B cells to antigen leads to impaired homing and SHIP1-dependent reduction in stromal cell-derived factor-1 responsiveness. J Immunol 178:3353–3357PubMedGoogle Scholar
  41. Bruhns P, Vely F, Malbec O, Fridman WH, Vivier E, Daeron M (2000) Molecular basis of the recruitment of the SH2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 by fcgamma RIIB. J Biol Chem 275:37357–37364PubMedCrossRefGoogle Scholar
  42. Bruno DL, Anderlid BM, Lindstrand A, Van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J, Martin CL, Douglas J, Nowak C, Adam MP, Kooy RF, Van Der AAN, Reyniers E, Vandeweyer G, Stolte-Dijkstra I, Dijkhuizen T, Yeung A, Delatycki M, Borgstrom B, Thelin L, Cardoso C, Van Bon B, Pfundt R, De Vries BB, Wallin A, Amor DJ, James PA, Slater HR, Schoumans J (2010) Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet 47:299–311PubMedCrossRefGoogle Scholar
  43. Bruyns C, Pesesse X, Moreau C, Blero D, Erneux C (1999) The two SH2-domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are coexpressed in human T lymphocytes. Biol Chem 380:969–974PubMedCrossRefGoogle Scholar
  44. Buettner R, Ottinger I, Gerhardt-Salbert C, Wrede CE, Scholmerich J, Bollheimer LC (2007) Antisense oligonucleotides against the lipid phosphatase SHIP2 improve muscle insulin sensitivity in a dietary rat model of the metabolic syndrome. Am J Physiol Endocrinol Metab 292:E1871−E1878PubMedCrossRefGoogle Scholar
  45. Campbell JK, Gurung R, Romero S, Speed CJ, Andrews RK, Berndt MC, Mitchell CA (1997) Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14-3-3zeta. Biochemistry 36:15363–15370PubMedCrossRefGoogle Scholar
  46. Cardoso C, Leventer RJ, Ward HL, Toyo-Oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH (2003) Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 72:918–930PubMedCrossRefGoogle Scholar
  47. Carretero-Ortega J, Walsh CT, Hernandez-Garcia R, Reyes-Cruz G, Brown JH, Vazquez-Prado J (2010) Phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-Rex-1), a guanine nucleotide exchange factor for Rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine stromal cell derived factor-1 (SDF-1/CXCL-12) linked to Rac activation, endothelial cell migration, and in vitro angiogenesis. Mol Pharmacol 77:435–442PubMedCrossRefGoogle Scholar
  48. Castells A, Gusella JF, Ramesh V, Rustgi AK (2000) A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res 60:2836–2839PubMedGoogle Scholar
  49. Chang KT, Min KT (2009) Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome. Proc Natl Acad Sci USA 106:17117–17122PubMedCrossRefGoogle Scholar
  50. Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583PubMedCrossRefGoogle Scholar
  51. Cheon MS, Kim SH, Ovod V, Kopitar Jerala N, Morgan JI, Hatefi Y, Ijuin T, Takenawa T, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis (Part III). Amino Acids 24:127–134PubMedGoogle Scholar
  52. Cheong FY, Sharma V, Blagoveshchenskaya A, Oorschot VM, Brankatschk B, Klumperman J, Freeze HH, Mayinger P (2010) Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic 11:1180–1190PubMedCrossRefGoogle Scholar
  53. Chi Y, Zhou B, Wang WQ, Chung SK, Kwon YU, Ahn YH, Chang YT, Tsujishita Y, Hurley JH, Zhang ZY (2004) Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe Synaptojanin and SHIP2. J Biol Chem 279:44987–44995PubMedCrossRefGoogle Scholar
  54. Cho C, Ge H, Branciforte D, Primakoff P, Myles DG (2000) Analysis of mouse fertilin in wild-type and fertilin beta(-/-) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev Biol 222:289–295PubMedCrossRefGoogle Scholar
  55. Cho HY, Lee BH, Choi HJ, Ha IS, Choi Y, Cheong HI (2008) Renal manifestations of Dent disease and Lowe syndrome. Pediatr Nephrol 23:243–249PubMedCrossRefGoogle Scholar
  56. Chong A, Wehrly TD, Nair V, Fischer ER, Barker JR, Klose KE, Celli J (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 76:5488–5499PubMedCrossRefGoogle Scholar
  57. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479PubMedCrossRefGoogle Scholar
  58. Chow KU, Nowak D, Kim SZ, Schneider B, Komor M, Boehrer S, Mitrou PS, Hoelzer D, Weidmann E, Hofmann WK (2006) In vivo drug-response in patients with leukemic non-Hodgkin’s lymphomas is associated with in vitro chemosensitivity and gene expression profiling. Pharmacol Res 53:49–61PubMedCrossRefGoogle Scholar
  59. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72PubMedCrossRefGoogle Scholar
  60. Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88PubMedCrossRefGoogle Scholar
  61. Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M (2004) Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res 64:8271–8275PubMedCrossRefGoogle Scholar
  62. Clement S, Krause U, Desmedt F, Tanti JF, Behrends J, Pesesse X, Sasaki T, Penninger J, Doherty M, Malaisse W, Dumont JE, Le Marchand-Brustel Y, Erneux C, Hue L, Schurmans S (2001) The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409:92–97PubMedCrossRefGoogle Scholar
  63. Cleves AE, Novick PJ, Bankaitis VA (1989) Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J Cell Biol 109:2939–2950PubMedCrossRefGoogle Scholar
  64. Coon BG, Mukherjee D, Hanna CB, Riese DJ 2nd, Lowe M, Aguilar RC (2009) Lowe syndrome patient fibroblasts display Ocrl1-specific cell migration defects that cannot be rescued by the homologous Inpp5b phosphatase. Hum Mol Genet 18:4478–4491PubMedCrossRefGoogle Scholar
  65. Corcione A, Arduino N, Ferretti E, Pistorio A, Spinelli M, Ottonello L, Dallegri F, Basso G, Pistoia V (2006) Chemokine receptor expression and function in childhood acute lymphoblastic leukemia of B-lineage. Leuk Res 30:365–372PubMedCrossRefGoogle Scholar
  66. Cormand B, Avela K, Pihko H, Santavuori P, Talim B, Topaloglu H, De La Chapelle A, Lehesjoki AE (1999) Assignment of the muscle-eye-brain disease gene to 1p32-p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 64:126–135PubMedCrossRefGoogle Scholar
  67. Cornelis RS, Van Vliet M, Vos CB, Cleton-Jansen AM, Van de Vijver MJ, Peterse JL, Khan PM, Borresen AL, Cornelisse CJ, Devilee P (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. Cancer Res 54:4200–4206PubMedGoogle Scholar
  68. Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR, Shidham A, Croce CM (2009) Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 114:1374–1382PubMedCrossRefGoogle Scholar
  69. Cox D, Dale BM, Kashiwada M, Helgason CD, Greenberg S (2001) A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and complement receptor 3 (alpha(M)beta(2); CD11b/CD18). J Exp Med 193:61–71PubMedCrossRefGoogle Scholar
  70. Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti TD, Schlesinger LS, Butchar JP, Tridandapani S (2009) MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 4:e8508Google Scholar
  71. Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188PubMedCrossRefGoogle Scholar
  72. Crowley JE, Stadanlick JE, Cambier JC, Cancro MP (2009) FcgammaRIIB signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation. Blood 113:1464–1473PubMedCrossRefGoogle Scholar
  73. De Smedt F, Verjans B, Mailleux P, Erneux C (1994) Cloning and expression of human brain type I inositol 1,4,5-trisphosphate 5-phosphatase. High levels of mRNA in cerebellar Purkinje cells. FEBS Lett 347:69–72PubMedCrossRefGoogle Scholar
  74. De Smedt F, Boom A, Pesesse X, Schiffmann SN, Erneux C (1996) Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J Biol Chem 271:10419–10424PubMedCrossRefGoogle Scholar
  75. De Smedt F, Missiaen L, Parys JB, Vanweyenberg V, De Smedt H, Erneux C (1997) Isoprenylated human brain type I inositol 1,4,5-trisphosphate 5-phosphatase controls Ca2+ oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem 272:17367–17375PubMedCrossRefGoogle Scholar
  76. Denley A, Gymnopoulos M, Kang S, Mitchell C, Vogt PK (2009) Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol Cancer Res 7:1132–1138PubMedCrossRefGoogle Scholar
  77. Dent CE, Friedman M (1964) Hypercalcuric rickets associated with renal tubular damage. Arch Dis Child 39:240–249PubMedCrossRefGoogle Scholar
  78. Despres B, Bouissonnie F, Wu HJ, Gomord V, Guilleminot J, Grellet F, Berger F, Delseny M, Devic M (2003) Three SAC1-like genes show overlapping patterns of expression in Arabidopsis but are remarkably silent during embryo development. Plant J 34:293–306PubMedCrossRefGoogle Scholar
  79. Dhanasekaran SM, Dash A, Yu J, Maine IP, Laxman B, Tomlins SA, Creighton CJ, Menon A, Rubin MA, Chinnaiyan AM (2005) Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty. FASEB J 19:243–245PubMedGoogle Scholar
  80. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422PubMedCrossRefGoogle Scholar
  81. Dimova I, Orsetti B, Negre V, Rouge C, Ursule L, Lasorsa L, Dimitrov R, Doganov N, Toncheva D, Theillet C (2009) Genomic markers for ovarian cancer at chromosomes 1, 8 and 17 revealed by array CGH analysis. Tumori 95:357–366PubMedGoogle Scholar
  82. Donald S, Hill K, Lecureuil C, Barnouin R, Krugmann S, John Coadwell W, Andrews SR, Walker SA, Hawkins PT, Stephens LR, Welch HC (2004) P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Lett 572:172–176PubMedCrossRefGoogle Scholar
  83. Donald S, Humby T, Fyfe I, Segonds-Pichon A, Walker SA, Andrews SR, Coadwell WJ, Emson P, Wilkinson LS, Welch HC (2008) P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proc Natl Acad Sci USA 105:4483–4488PubMedCrossRefGoogle Scholar
  84. Dong X, Mo Z, Bokoch G, Guo C, Li Z, Wu D (2005) P-Rex1 is a primary Rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr Biol 15:1874–1879PubMedCrossRefGoogle Scholar
  85. Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O, Michel F (2006) T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J Exp Med 203:2509–2518PubMedCrossRefGoogle Scholar
  86. Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006a) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731CrossRefGoogle Scholar
  87. Duex JE, Tang F, Weisman LS (2006b) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172:693–704CrossRefGoogle Scholar
  88. Dyson JM, O’Malley CJ, Becanovic J, Munday AD, Berndt MC, Coghill ID, Nandurkar HH, Ooms LM, Mitchell CA (2001) The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol 155:1065–1079PubMedCrossRefGoogle Scholar
  89. Dyson JM, Munday AD, Kong AM, Huysmans RD, Matzaris M, Layton MJ, Nandurkar HH, Berndt MC, Mitchell CA (2003) SHIP-2 forms a tetrameric complex with filamin, actin, and GPIb-IX-V: localization of SHIP-2 to the activated platelet actin cytoskeleton. Blood 102:940–948PubMedCrossRefGoogle Scholar
  90. Edmunds C, Parry RV, Burgess SJ, Reaves B, Ward SG (1999) CD28 stimulates tyrosine phosphorylation, cellular redistribution and catalytic activity of the inositol lipid 5-phosphatase SHIP. Eur J Immunol 29:3507–3515PubMedCrossRefGoogle Scholar
  91. Eissmann P, Beauchamp L, Wooters J, Tilton JC, Long EO, Watzl C (2005) Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood 105:4722–4729PubMedCrossRefGoogle Scholar
  92. Ellsworth RE, Ellsworth DL, Lubert SM, Hooke J, Somiari RI, Shriver CD (2003) High-throughput loss of heterozygosity mapping in 26 commonly deleted regions in breast cancer. Cancer Epidemiol Biomarkers Prev 12:915–919PubMedGoogle Scholar
  93. Erdman S, Lin L, Malczynski M, Snyder M (1998) Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140:461–483PubMedCrossRefGoogle Scholar
  94. Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390PubMedCrossRefGoogle Scholar
  95. Erkeland SJ, Valkhof M, Heijmans-Antonissen C, Van Hoven-Beijen A, Delwel R, Hermans MHA, Touw IP (2004) Large-scale identification of disease genes involved in acute myeloid leukemia. J Virol 78:1971–1980PubMedCrossRefGoogle Scholar
  96. Faucherre A, Desbois P, Nagano F, Satre V, Lunardi J, Gacon G, Dorseuil O (2005) Lowe syndrome protein Ocrl1 is translocated to membrane ruffles upon Rac GTPase activation: a new perspective on Lowe syndrome pathophysiology. Hum Mol Genet 14:1441–1448PubMedCrossRefGoogle Scholar
  97. Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Knodler A, Mayinger P (2005) Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol 168:185–191PubMedCrossRefGoogle Scholar
  98. Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK, Lopez-Knowles E, Sriratana A, Gurung R, Baglietto L, Giles GG, Bailey CG, Rasko JE, Shields BJ, Price JT, Majerus PW, Sutherland RL, Tiganis T, McLean CA, Mitchell CA (2010) Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci USA 107:22231–22236Google Scholar
  99. Fejzo MS, Godfrey T, Chen C, Waldman F, Gray JW (1998) Molecular cytogenetic analysis of consistent abnormalities at 8q12-q22 in breast cancer. Genes Chromosomes Cancer 22:105–113PubMedCrossRefGoogle Scholar
  100. Feng Y, Wente SR, Majerus PW (2001) Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci USA 98:875–879PubMedCrossRefGoogle Scholar
  101. Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878PubMedCrossRefGoogle Scholar
  102. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M, Hopkins B, Keniry M, Sulis ML, Mense S, Hibshoosh H, Parsons R (2009) Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325:1261–1265PubMedCrossRefGoogle Scholar
  103. Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411PubMedGoogle Scholar
  104. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668PubMedCrossRefGoogle Scholar
  105. Fukuda R, Hayashi A, Utsunomiya A, Nukada Y, Fukui R, Itoh K, Tezuka K, Ohashi K, Mizuno K, Sakamoto M, Hamanoue M, Tsuji T (2005) Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL). Proc Natl Acad Sci USA 102:15213–15218PubMedCrossRefGoogle Scholar
  106. Fukui K, Wada T, Kagawa S, Nagira K, Ikubo M, Ishihara H, Kobayashi M, Sasaoka T (2005) Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5′-phosphatase 2) on insulin signaling and glucose metabolism in mice. Diabetes 54:1958–1967PubMedCrossRefGoogle Scholar
  107. Gagnon A, Artemenko Y, Crapper T, Sorisky A (2003) Regulation of endogenous SH2 domain-containing inositol 5-phosphatase (SHIP2) in 3T3-L1 and human preadipocytes. J Cell Physiol 197:243–250PubMedCrossRefGoogle Scholar
  108. Galli SJ, Tsai M (2010) Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 40:1843–1851PubMedCrossRefGoogle Scholar
  109. Galyov EE, Wood MW, Rosqvist R, Mullan PB, Watson PR, Hedges S, Wallis TS (1997) A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 25:903–912Google Scholar
  110. Garcia-Palma L, Horn S, Haag F, Diessenbacher P, Streichert T, Mayr GW, Jucker M (2005) Up-regulation of the T cell quiescence factor KLF2 in a leukaemic T-cell line after expression of the inositol 5′-phosphatase SHIP-1. Br J Haematol 131:628–631PubMedCrossRefGoogle Scholar
  111. Gardner RJ, Brown N (1976) Lowe’s syndrome: identification of carriers by lens examination. J Med Genet 13:449–454PubMedCrossRefGoogle Scholar
  112. Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251PubMedCrossRefGoogle Scholar
  113. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–125PubMedCrossRefGoogle Scholar
  114. Ghansah T, Paraiso KH, Highfill S, Desponts C, May S, McIntosh JK, Wang JW, Ninos J, Brayer J, Cheng F, Sotomayor E, Kerr WG (2004) Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J Immunol 173:7324–7330PubMedGoogle Scholar
  115. Giuriato S, Payrastre B, Drayer AL, Plantavid M, Woscholski R, Parker P, Erneux C, Chap H (1997) Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem 272:26857–26863PubMedCrossRefGoogle Scholar
  116. Giuriato S, Pesesse X, Bodin S, Sasaki T, Viala C, Marion E, Penninger J, Schurmans S, Erneux C, Payrastre B (2003) SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels. Biochem J 376:199–207PubMedCrossRefGoogle Scholar
  117. Gloire G, Erneux C, Piette J (2007) The role of SHIP1 in T-lymphocyte life and death. Biochem Soc Trans 35:277–280PubMedCrossRefGoogle Scholar
  118. Gong XQ, Frandsen A, Lu WY, Wan Y, Zabek RL, Pickering DS, Bai D (2005) D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons. Br J Pharmacol 145:449–459PubMedCrossRefGoogle Scholar
  119. Grempler R, Zibrova D, Schoelch C, Van Marle A, Rippmann JF, Redemann N (2007) Normalization of prandial blood glucose and improvement of glucose tolerance by liver-specific inhibition of SH2 domain containing inositol phosphatase 2 (SHIP2) in diabetic KKAy mice: SHIP2 inhibition causes insulin-mimetic effects on glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes 56:2235–2241PubMedCrossRefGoogle Scholar
  120. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M, Peterson C, Meltzer PS (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984PubMedGoogle Scholar
  121. Gu Z, Rubin MA, Yang Y, Deprimo SE, Zhao H, Horvath S, Brooks JD, Loda M, Reiter RE (2005) Reg IV: a promising marker of hormone refractory metastatic prostate cancer. Clin Cancer Res 11:2237–2243PubMedCrossRefGoogle Scholar
  122. Guittard G, Gerard A, Dupuis-Coronas S, Tronchere H, Mortier E, Favre C, Olive D, Zimmermann P, Payrastre B, Nunes JA (2009) Cutting edge: Dok-1 and Dok-2 adaptor molecules are regulated by phosphatidylinositol 5-phosphate production in T cells. J Immunol 182:3974–3978PubMedCrossRefGoogle Scholar
  123. Guittard G, Mortier E, Tronchere H, Firaguay G, Gerard A, Zimmermann P, Payrastre B, Nunes JA (2010) Evidence for a positive role of PtdIns5P in T-cell signal transduction pathways. FEBS Lett 584:2455–2460PubMedCrossRefGoogle Scholar
  124. Guo S, Stolz LE, Lemrow SM, York JD (1999) SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 274:12990–12995PubMedCrossRefGoogle Scholar
  125. Gurung R, Tan A, Ooms LM, McGrath MJ, Huysmans RD, Munday AD, Prescott M, Whisstock JC, Mitchell CA (2003) Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J Biol Chem 278:11376–11385PubMedCrossRefGoogle Scholar
  126. Haddon DJ, Antignano F, Hughes MR, Blanchet MR, Zbytnuik L, Krystal G, McNagny KM (2009) SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. J Immunol 183:228–236PubMedCrossRefGoogle Scholar
  127. Haffner C, Di Paolo G, Rosenthal JA, De Camilli P (2000) Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Curr Biol 10:471–474PubMedCrossRefGoogle Scholar
  128. Hamilton MJ, Ho VW, Kuroda E, Ruschmann J, Antignano F, Lam V, Krystal G (2011) Role of SHIP in cancer. Exp Hematol 39:2–13Google Scholar
  129. Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM (2000) Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 150:589–600PubMedCrossRefGoogle Scholar
  130. Haslinger B, Mandl-Weber S, Sitter T (2000) Thrombin suppresses matrix metalloproteinase 2 activity and increases tissue inhibitor of metalloproteinase 1 synthesis in cultured human peritoneal mesothelial cells. Perit Dial Int 20:778–783PubMedGoogle Scholar
  131. Haucke V (2003) Where proteins and lipids meet: membrane trafficking on the move. Dev Cell 4:153–157PubMedCrossRefGoogle Scholar
  132. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK (1998) Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 12:1610–1620PubMedCrossRefGoogle Scholar
  133. Helgason CD, Kalberer CP, Damen JE, Chappel SM, Pineault N, Krystal G, Humphries RK (2000) A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of b lymphocytes in ship -/- mice. J Exp Med 191:781–794PubMedCrossRefGoogle Scholar
  134. Hellsten E, Evans JP, Bernard DJ, Janne PA, Nussbaum RL (2001) Disrupted sperm function and fertilin beta processing in mice deficient in the inositol polyphosphate 5-phosphatase Inpp5b. Dev Biol 240:641–653PubMedCrossRefGoogle Scholar
  135. Hernandez LD, Hueffer K, Wenk MR, Galan JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807PubMedCrossRefGoogle Scholar
  136. Hernandez-Negrete I, Carretero-Ortega J, Rosenfeldt H, Hernandez-Garcia R, Calderon-Salinas JV, Reyes-Cruz G, Gutkind JS, Vazquez-Prado J (2007) P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J Biol Chem 282:23708–23715PubMedCrossRefGoogle Scholar
  137. Hill K, Krugmann S, Andrews SR, Coadwell WJ, Finan P, Welch HC, Hawkins PT, Stephens LR (2005) Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem 280:4166–4173PubMedCrossRefGoogle Scholar
  138. Hitomi K, Tahara-Hanaoka S, Someya S, Fujiki A, Tada H, Sugiyama T, Shibayama S, Shibuya K, Shibuya A (2010) An immunoglobulin-like receptor, Allergin-1, inhibits immunoglobulin E-mediated immediate hypersensitivity reactions. Nat Immunol 11:601–607PubMedCrossRefGoogle Scholar
  139. Hodgson MC, Shao LJ, Frolov A, Li R, Peterson LE, Ayala G, Ittmann MM, Weigel NL, Agoulnik IU (2011) Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res 71:572–582PubMedCrossRefGoogle Scholar
  140. Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent Disease with mutations in OCRL1. Am J Hum Genet 76:260–267PubMedCrossRefGoogle Scholar
  141. Horan KA, Watanabe K, Kong AM, Bailey CG, Rasko JE, Sasaki T, Mitchell CA (2007) Regulation of FcgammaR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3 mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood 110:4480–4491PubMedCrossRefGoogle Scholar
  142. Horn S, Endl E, Fehse B, Weck MM, Mayr GW, Jucker M (2004) Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle. Leukemia 18:1839–1849PubMedCrossRefGoogle Scholar
  143. Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G (1998) The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc Natl Acad Sci USA 95:11330–11335PubMedCrossRefGoogle Scholar
  144. Huber M, Kalesnikoff J, Reth M, Krystal G (2002) The role of SHIP in mast cell degranulation and IgE-induced mast cell survival. Immunol Lett 82:17–21PubMedCrossRefGoogle Scholar
  145. Hughes WE, Cooke FT, Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350(Pt 2):337–352PubMedCrossRefGoogle Scholar
  146. Hung CS, Lin YL, Wu CI, Huang CJ, Ting LP (2009) Suppression of hepatitis B viral gene expression by phosphoinositide 5-phosphatase SKIP. Cell Microbiol 11:37–50PubMedCrossRefGoogle Scholar
  147. Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J 25:3750–3761PubMedCrossRefGoogle Scholar
  148. Hyvonen ME, Saurus P, Wasik A, Heikkila E, Havana M, Trokovic R, Saleem M, Holthofer H, Lehtonen S (2010) Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol 328:70–79PubMedCrossRefGoogle Scholar
  149. Iida A, Kurose K, Isobe R, Akiyama F, Sakamoto G, Yoshimoto M, Kasumi F, Nakamura Y, Emi M (1998) Mapping of a new target region of allelic loss to a 2-cM interval at 22q13.1 in primary breast cancer. Genes Chromosomes Cancer 21:108–112PubMedCrossRefGoogle Scholar
  150. Ijuin T, Takenawa T (2003) SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol Cell Biol 23:1209–1220PubMedCrossRefGoogle Scholar
  151. Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T (2000) Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem 275:10870–10875PubMedCrossRefGoogle Scholar
  152. Ijuin T, Yu YE, Mizutani K, Pao A, Tateya S, Tamori Y, Bradley A, Takenawa T (2008) Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol 28:5184–5195PubMedCrossRefGoogle Scholar
  153. Ikonomov OC, Sbrissa D, Ijuin T, Takenawa T, Shisheva A (2009) Sac3 is an insulin-regulated phosphatidylinositol 3,5-bisphosphate phosphatase: gain in insulin responsiveness through Sac3 down-regulation in adipocytes. J Biol Chem 284:23961–23971PubMedCrossRefGoogle Scholar
  154. Ikonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (2010) ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem 285:26760–26764PubMedCrossRefGoogle Scholar
  155. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedCrossRefGoogle Scholar
  156. Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T, Menard S, Croce CM, Tagliabue E (2009) microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69:2195–2200PubMedCrossRefGoogle Scholar
  157. Irie F, Okuno M, Pasquale EB, Yamaguchi Y (2005) EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol 7:501–509PubMedCrossRefGoogle Scholar
  158. Ishida S, Funakoshi A, Miyasaka K, Shimokata H, Ando F, Takiguchi S (2006) Association of SH-2 containing inositol 5′-phosphatase 2 gene polymorphisms and hyperglycemia. Pancreas 33:63–67PubMedCrossRefGoogle Scholar
  159. Isnardi I, Bruhns P, Bismuth G, Fridman WH, Daeron M (2006) The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human FcgammaRIIB and is mandatory for negative regulation of B cell activation. Immunol Lett 104:156–165PubMedCrossRefGoogle Scholar
  160. Ivetac I, Munday AD, Kisseleva MV, Zhang X-M, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA (2005) The type I{alpha} inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16:2218–2233PubMedCrossRefGoogle Scholar
  161. Ivetac I, Gurung R, Hakim S, Horan KA, Sheffield DA, Binge LC, Majerus PW, Tiganis T, Mitchell CA (2009) Regulation of PI(3)K/Akt signalling and cellular transformation by inositol polyphosphate 4-phosphatase-1. EMBO Rep 10:487–493PubMedCrossRefGoogle Scholar
  162. Jackson C, Welch HC, Bellamy TC (2010) Control of cerebellar long-term potentiation by P-Rex-family guanine-nucleotide exchange factors and phosphoinositide 3-kinase. PLoS One 5:e11962Google Scholar
  163. Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M, Blockmans M, Pernot E, Kisseleva MV, Compere P, Schiffmann SN, Gergely F, Riley JH, Perez-Morga D, Woods CG, Schurmans S (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41:1027–1031PubMedCrossRefGoogle Scholar
  164. Janne PA, Dutra AS, Dracopoli NC, Charnas LR, Puck JM, Nussbaum RL (1994) Localization of the 75-kDa inositol polyphosphate-5-phosphatase (INPP5B) to human chromosome band 1p34. Cytogenet Cell Genet 66:164–166PubMedCrossRefGoogle Scholar
  165. Janne PA, Rochelle JM, Martin-Deleon PA, Stambolian D, Seldin MF, Nussbaum RL (1995) Mapping of the 75-kDa inositol polyphosphate-5-phosphatase (Inpp5b) to distal mouse chromosome 4 and its exclusion as a candidate gene for dysgenetic lens. Genomics 28:280–285PubMedCrossRefGoogle Scholar
  166. Janne PA, Suchy SF, Bernard D, Macdonald M, Crawley J, Grinberg A, Wynshaw-Boris A, Westphal H, Nussbaum RL (1998) Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J Clin Invest 101:2042–2053PubMedCrossRefGoogle Scholar
  167. Jason TL, Koropatnick J, Berg RW (2004) Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 201:66–83PubMedCrossRefGoogle Scholar
  168. Jefferson AB, Majerus PW (1995) Properties of type II inositol polyphosphate 5-phosphatase. J Biol Chem 270:9370–9377PubMedCrossRefGoogle Scholar
  169. Jiang X, Stuible M, Chalandon Y, Li A, Chan WY, Eisterer W, Krystal G, Eaves A, Eaves C (2003) Evidence for a positive role of SHIP in the BCR-ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 102:2976–2984PubMedCrossRefGoogle Scholar
  170. Joseph RE, Norris FA (2005) Substrate specificity and recognition is conferred by the pleckstrin homology domain of the Dbl family guanine nucleotide exchange factor P-Rex2. J Biol Chem 280:27508–27512PubMedCrossRefGoogle Scholar
  171. Jospin M, Watanabe S, Joshi D, Young S, Hamming K, Thacker C, Snutch TP, Jorgensen EM, Schuske K (2007) UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr Biol 17:1595–1600PubMedCrossRefGoogle Scholar
  172. Kagawa S, Sasaoka T, Yaguchi S, Ishihara H, Tsuneki H, Murakami S, Fukui K, Wada T, Kobayashi S, Kimura I, Kobayashi M (2005) Impact of SRC homology 2-containing inositol 5′-phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling. J Clin Endocrinol Metab 90:2911–2919PubMedCrossRefGoogle Scholar
  173. Kagawa S, Soeda Y, Ishihara H, Oya T, Sasahara M, Yaguchi S, Oshita R, Wada T, Tsuneki H, Sasaoka T (2008) Impact of transgenic overexpression of SH2-containing inositol 5′-phosphatase 2 on glucose metabolism and insulin signaling in mice. Endocrinology 149:642–650PubMedCrossRefGoogle Scholar
  174. Kaisaki PJ, Delepine M, Woon PY, Sebag-Montefiore L, Wilder SP, Menzel S, Vionnet N, Marion E, Riveline JP, Charpentier G, Schurmans S, Levy JC, Lathrop M, Farrall M, Gauguier D (2004) Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes 53:1900–1904PubMedCrossRefGoogle Scholar
  175. Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U, Niki M, Pandolfi PP, Field EH, Rothman PB (2006) Downstream of tyrosine kinases-1 and Src homology 2-containing inositol 5′-phosphatase are required for regulation of CD4+CD25+ T cell development. J Immunol 176:3958–3965PubMedGoogle Scholar
  176. Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P (2008) Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol 182:1007–1016PubMedCrossRefGoogle Scholar
  177. Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12(Spec No 1):R89–R96PubMedCrossRefGoogle Scholar
  178. Kawano T, Indo Y, Nakazato H, Shimadzu M, Matsuda I (1998) Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes. Am J Med Genet 77:348–355PubMedCrossRefGoogle Scholar
  179. Kim B, Bang S, Lee S, Kim S, Jung Y, Lee C, Choi K, Lee SG, Lee K, Lee Y, Kim SS, Yeom YI, Kim YS, Yoo HS, Song K, Lee I (2003) Expression profiling and subtype-specific expression of stomach cancer. Cancer Res 63:8248–8255PubMedGoogle Scholar
  180. Kimura T, Sakamoto H, Appella E, Siraganian RP (1997) The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of the high affinity IgE receptor. J Biol Chem 272:13991–13996PubMedCrossRefGoogle Scholar
  181. Kisseleva MV, Wilson MP, Majerus PW (2000) The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem 275:20110–20116PubMedCrossRefGoogle Scholar
  182. Knodler LA, Finlay BB, Steele-Mortimer O (2005) The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280:9058–9064PubMedCrossRefGoogle Scholar
  183. Knodler LA, Winfree S, Drecktrah D, Ireland R, Steele-Mortimer O (2009) Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane. Cell Microbiol 11:1652–1670PubMedCrossRefGoogle Scholar
  184. Kobayashi K, Amemiya S, Higashida K, Ishihara T, Sawanobori E, Mochizuki M, Kikuchi N, Tokuyama K, Nakazawa S (2000) Pathogenic factors of glucose intolerance in obese Japanese adolescents with type 2 diabetes. Metabolism 49:186–191PubMedCrossRefGoogle Scholar
  185. Kong AM, Speed CJ, O’Malley CJ, Layton MJ, Meehan T, Loveland KL, Cheema S, Ooms LM, Mitchell CA (2000) Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. J Biol Chem 275:24052–24064PubMedCrossRefGoogle Scholar
  186. Kong AM, Horan KA, Sriratana A, Bailey CG, Collyer LJ, Nandurkar HH, Shisheva A, Layton MJ, Rasko JE, Rowe T, Mitchell CA (2006) Phosphatidylinositol 3-phosphate [PtdIns3P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol Cell Biol 26:6065–6081PubMedCrossRefGoogle Scholar
  187. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957PubMedCrossRefGoogle Scholar
  188. Krendel M, Osterweil EK, Mooseker MS (2007) Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581:644–650PubMedCrossRefGoogle Scholar
  189. Kumar A, Blanton SH, Babu M, Markandaya M, Girimaji SC (2004) Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet 66:341–348PubMedCrossRefGoogle Scholar
  190. Lakhanpal GK, Vecchiarelli-Federico LM, Li YJ, Cui JW, Bailey ML, Spaner DE, Dumont DJ, Barber DL, Ben-David Y (2010) The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 116:428–436PubMedCrossRefGoogle Scholar
  191. Latulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62:4499–4506PubMedGoogle Scholar
  192. Laxminarayan KM, Matzaris M, Speed CJ, Mitchell CA (1993) Purification and characterization of a 43-kDa membrane-associated inositol polyphosphate 5-phosphatase from human placenta. J Biol Chem 268:4968–4974PubMedGoogle Scholar
  193. Laxminarayan KM, Chan BK, Tetaz T, Bird PI, Mitchell CA (1994) Characterization of a cDNA encoding the 43-kDa membrane-associated inositol-polyphosphate 5-phosphatase. J Biol Chem 269:17305–17310PubMedGoogle Scholar
  194. Ledezma-Sanchez BA, Garcia-Regalado A, Guzman-Hernandez ML, Vazquez-Prado J (2010) Sphingosine-1-phosphate receptor S1P1 is regulated by direct interactions with P-Rex1, a Rac guanine nucleotide exchange factor. Biochem Biophys Res Commun 391:1647–1652PubMedCrossRefGoogle Scholar
  195. Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci USA 101:546–551PubMedCrossRefGoogle Scholar
  196. Lewis JP, Palmer ND, Ellington JB, Divers J, Ng MC, Lu L, Langefeld CD, Freedman BI, Bowden DW (2010) Analysis of candidate genes on chromosome 20q12-13.1 reveals evidence for BMI mediated association of PREX1 with type 2 diabetes in European Americans. Genomics 96:211–219PubMedCrossRefGoogle Scholar
  197. Li Z, Paik JH, Wang Z, Hla T, Wu D (2005) Role of guanine nucleotide exchange factor P-Rex-2b in sphingosine 1-phosphate-induced Rac1 activation and cell migration in endothelial cells. Prostaglandins Other Lipid Mediat 76:95–104PubMedCrossRefGoogle Scholar
  198. Lichter-Konecki U, Farber LW, Cronin JS, Suchy SF, Nussbaum RL (2006) The effect of missense mutations in the RhoGAP-homology domain on ocrl1 function. Mol Genet Metab 89:121–128PubMedCrossRefGoogle Scholar
  199. Lin T, Orrison BM, Leahey AM, Suchy SF, Bernard DJ, Lewis RA, Nussbaum RL (1997) Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am J Hum Genet 60:1384–1388PubMedCrossRefGoogle Scholar
  200. Lin DC, Quevedo C, Brewer NE, Bell A, Testa JR, Grimes ML, Miller FD, Kaplan DR (2006) APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Mol Cell Biol 26:8928–8941PubMedCrossRefGoogle Scholar
  201. Liu L, Damen JE, Cutler RL, Krystal G (1994) Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol 14:6926–6935PubMedGoogle Scholar
  202. Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, Kozieradzki I, Ohashi PS, Penninger JM, Dumont DJ (1998a) The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med 188:1333–1342CrossRefGoogle Scholar
  203. Liu Q, Shalaby F, Jones J, Bouchard D, Dumont DJ (1998b) The SH2-containing inositol polyphosphate 5-phosphatase, ship, is expressed during hematopoiesis and spermatogenesis. Blood 91:2753–2759Google Scholar
  204. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ, Penninger JM (1999) SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 13:786–791PubMedCrossRefGoogle Scholar
  205. Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear JE, Bankaitis VA (2008) The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell 19:3080–3096PubMedCrossRefGoogle Scholar
  206. Liu Y, Boukhelifa M, Tribble E, Bankaitis VA (2009) Functional studies of the mammalian Sac1 phosphoinositide phosphatase. Adv Enzyme Regul 49:75–86PubMedCrossRefGoogle Scholar
  207. Lo TC, Barnhill LM, Kim Y, Nakae EA, Yu AL, Diccianni MB (2009) Inactivation of SHIP1 in T-cell acute lymphoblastic leukemia due to mutation and extensive alternative splicing. Leuk Res 33:1562–1566PubMedCrossRefGoogle Scholar
  208. Lowe M (2005) Structure and function of the Lowe syndrome protein OCRL1. Traffic 6:711–719PubMedCrossRefGoogle Scholar
  209. Lucas DM, Rohrschneider LR (1999) A novel spliced form of SH2-containing inositol phosphatase is expressed during myeloid development. Blood 93:1922–1933PubMedGoogle Scholar
  210. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K, Hanamura I, Miura K, Iida S, Ueda R, Naoe T, Akao Y, Ohno R, Ohnishi K (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17:1–8PubMedCrossRefGoogle Scholar
  211. Luo JM, Liu ZL, Hao HL, Wang FX, Dong ZR, Ohno R (2004) Mutation analysis of SHIP gene in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 12:420–426PubMedGoogle Scholar
  212. Ma K, Cheung SM, Marshall AJ, Duronio V (2008) PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity. Cell Signal 20:684–694PubMedCrossRefGoogle Scholar
  213. Maeda K, Mehta H, Drevets DA, Coggeshall KM (2010) IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 115:4699–4706PubMedCrossRefGoogle Scholar
  214. Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G, Dahiya R (2010) MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 116:5637–5649PubMedCrossRefGoogle Scholar
  215. Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, Symons M (2000) Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol 10:1383–1386PubMedCrossRefGoogle Scholar
  216. Mallo GV, Espina M, Smith AC, Terebiznik MR, Aleman A, Finlay BB, Rameh LE, Grinstein S, Brumell JH (2008) SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 182:741–752PubMedCrossRefGoogle Scholar
  217. Manford A, Xia T, Saxena AK, Stefan C, Hu F, Emr SD, Mao Y (2010) Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J 29:1489–1498PubMedCrossRefGoogle Scholar
  218. Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan TA (2007) The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron 56:1004–1018PubMedCrossRefGoogle Scholar
  219. Manji SSM, Williams LH, Miller KA, Ooms LM, Bahlo M, Mitchell CA, Dahl HM (2011) A mutation in Synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One 6(3):e17607Google Scholar
  220. Mao Y, Balkin DM, Zoncu R, Erdmann KS, Tomasini L, Hu F, Jin MM, Hodsdon ME, De Camilli P (2009) A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J 28:1831–1842PubMedCrossRefGoogle Scholar
  221. Marcano AC, Burke B, Gungadoo J, Wallace C, Kaisaki PJ, Woon PY, Farrall M, Clayton D, Brown M, Dominiczak A, Connell JM, Webster J, Lathrop M, Caulfield M, Samani N, Gauguier D, Munroe PB (2007) Genetic association analysis of inositol polyphosphate phosphatase-like 1 (INPPL1, SHIP2) variants with essential hypertension. J Med Genet 44:603–605PubMedCrossRefGoogle Scholar
  222. Marcello MR, Evans JP (2010) Multivariate analysis of male reproductive function in Inpp5b-/- mice reveals heterogeneity in defects in fertility, sperm-egg membrane interaction and proteolytic cleavage of sperm ADAMs. Mol Hum Reprod 16:492–505PubMedCrossRefGoogle Scholar
  223. Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51:2012–2017PubMedCrossRefGoogle Scholar
  224. Marza E, Long T, Saiardi A, Sumakovic M, Eimer S, Hall DH, Lesa GM (2008) Polyunsaturated fatty acids influence synaptojanin localization to regulate synaptic vesicle recycling. Mol Biol Cell 19:833–842PubMedCrossRefGoogle Scholar
  225. Mason D, Mallo GV, Terebiznik MR, Payrastre B, Finlay BB, Brumell JH, Rameh L, Grinstein S (2007) Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatase. J Gen Physiol 129:267–283PubMedCrossRefGoogle Scholar
  226. Matzaris M, O’Malley CJ, Badger A, Speed CJ, Bird PI, Mitchell CA (1998) Distinct membrane and cytosolic forms of inositol polyphosphate 5-phosphatase II. Efficient membrane localization requires two discrete domains. J Biol Chem 273:8256–8267PubMedCrossRefGoogle Scholar
  227. Mayeenuddin LH, Garrison JC (2006) Phosphorylation of P-Rex1 by the cyclic AMP-dependent protein kinase inhibits the phosphatidylinositiol (3,4,5)-trisphosphate and Gbetagamma-mediated regulation of its activity. J Biol Chem 281:1921–1928PubMedCrossRefGoogle Scholar
  228. McCrea HJ, Paradise S, Tomasini L, Addis M, Melis MA, De Matteis MA, De Camilli P (2008) All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem Biophys Res Commun 369:493–499PubMedCrossRefGoogle Scholar
  229. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357PubMedCrossRefGoogle Scholar
  230. McPherson RJ, Marshall JF (1996) Intrastriatal AP5 differentially affects behaviors induced by local infusions of D1 vs. D2 dopamine agonists. Brain Res 739:19–25PubMedCrossRefGoogle Scholar
  231. Miletic AV, Anzelon-Mills AN, Mills DM, Omori SA, Pedersen IM, Shin DM, Ravetch JV, Bolland S, Morse HC 3rd, Rickert RC (2010) Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases. J Exp Med 207:2407–2420PubMedCrossRefGoogle Scholar
  232. Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25:2557–2565PubMedCrossRefGoogle Scholar
  233. Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001) Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem 276:22011–22015PubMedCrossRefGoogle Scholar
  234. Mitchell CA, Connolly TM, Majerus PW (1989) Identification and isolation of a 75-kDa inositol polyphosphate-5-phosphatase from human platelets. J Biol Chem 264:8873–8877PubMedGoogle Scholar
  235. Mochizuki Y, Takenawa T (1999) Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. J Biol Chem 274:36790–36795PubMedCrossRefGoogle Scholar
  236. Montero JC, Seoane S, Ocaña A, Pandiella A (2011) P-Rex1 participates in Neuregulin-ErbB signal transduction and its expression correlates with patient outcome in breast cancer. Oncogene 30:1059–1071Google Scholar
  237. Munday AD, Norris FA, Caldwell KK, Brown S, Majerus PW, Mitchell CA (1999) The inositol polyphosphate 4-phosphatase forms a complex with phosphatidylinositol 3-kinase in human platelet cytosol. Proc Natil Acad Sci USA 96:3640–3645CrossRefGoogle Scholar
  238. Muntzel MS, Anderson EA, Johnson AK, Mark AL (1995) Mechanisms of insulin action on sympathetic nerve activity. Clin Exp Hypertens 17:39–50PubMedCrossRefGoogle Scholar
  239. Muraille E, Pesesse X, Kuntz C, Erneux C (1999) Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement of SHIP-2 in negative signalling of B-cells. Biochem J 342(Pt 3):697–705PubMedCrossRefGoogle Scholar
  240. Nakamura K, Malykhin A, Coggeshall KM (2002) The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood 100:3374–3382PubMedCrossRefGoogle Scholar
  241. Nakatsu F, Perera RM, Lucast L, Zoncu R, Domin J, Gertler FB, Toomre D, De Camilli P (2010) The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J Cell Biol 190:307–315PubMedCrossRefGoogle Scholar
  242. Naylor T, Greshock J, Wang Y, Colligon T, Yu Q, Clemmer V, Zaks T, Weber B (2005) High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7:R1186–R1198PubMedCrossRefGoogle Scholar
  243. Neill L, Tien AH, Rey-Ladino J, Helgason CD (2007) SHIP-deficient mice provide insights into the regulation of dendritic cell development and function. Exp Hematol 35:627–639PubMedCrossRefGoogle Scholar
  244. Nemoto Y, Arribas M, Haffner C, De Camilli P (1997) Synaptojanin 2, a novel synaptojanin isoform with a distinct targeting domain and expression pattern. J Biol Chem 272:30817–30821PubMedCrossRefGoogle Scholar
  245. Nemoto Y, Kearns BG, Wenk MR, Chen H, Mori K, Alb JG Jr, De Camilli P, Bankaitis VA (2000) Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem 275:34293–34305PubMedCrossRefGoogle Scholar
  246. Nemoto Y, Wenk MR, Watanabe M, Daniell L, Murakami T, Ringstad N, Yamada H, Takei K, De Camilli P (2001) Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem 276:41133–41142PubMedCrossRefGoogle Scholar
  247. Nicole S, Ben Hamida C, Beighton P, Bakouri S, Belal S, Romero N, Viljoen D, Ponsot G, Sammoud A, Weissenbach J et al (1995) Localization of the Schwartz-Jampel syndrome (SJS) locus to chromosome 1p34-p36.1 by homozygosity mapping. Hum Mol Genet 4:1633–1636PubMedCrossRefGoogle Scholar
  248. Nie B, Cheng N, Dinauer MC, Ye RD (2010) Characterization of P-Rex1 for its role in fMet-Leu-Phe-induced superoxide production in reconstituted COS(phox) cells. Cell Signal 22:770–782PubMedCrossRefGoogle Scholar
  249. Niebuhr K, Jouihri N, Allaoui A, Gounon P, Sansonetti PJ, Parsot C (2000) IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol Microbiol 38:8–19PubMedCrossRefGoogle Scholar
  250. Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078PubMedCrossRefGoogle Scholar
  251. Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R, Kuroda S, Horie Y, Forster I, Mak TW, Yonekawa H, Penninger JM, Kanaho Y, Suzuki A, Sasaki T (2007) Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9:36–44PubMedCrossRefGoogle Scholar
  252. Norden AG, Lapsley M, Igarashi T, Kelleher CL, Lee PJ, Matsuyama T, Scheinman SJ, Shiraga H, Sundin DP, Thakker RV, Unwin RJ, Verroust P, Moestrup SK (2002) Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J Am Soc Nephrol 13:125–133PubMedGoogle Scholar
  253. Norris F, Majerus P (1994) Hydrolysis of phosphatidylinositol 3,4-bisphosphate by inositol polyphosphate 4-phosphatase isolated by affinity elution chromatography. J Biol Chem 269:8716–8720PubMedGoogle Scholar
  254. Norris FA, Auethavekiat V, Majerus PW (1995) The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270:16128–16133PubMedCrossRefGoogle Scholar
  255. Norris FA, Atkins RC, Majerus PW (1997) The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J Biol Chem 272:23859–23864PubMedCrossRefGoogle Scholar
  256. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW (1998) SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA 95:14057–14059PubMedCrossRefGoogle Scholar
  257. Novick P, Osmond BC, Botstein D (1989) Suppressors of yeast actin mutations. Genetics 121:659–674PubMedGoogle Scholar
  258. Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212PubMedCrossRefGoogle Scholar
  259. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106:7113–7118PubMedCrossRefGoogle Scholar
  260. Ooms LM, Fedele CG, Astle MV, Ivetac I, Cheung V, Pearson RB, Layton MJ, Forrai A, Nandurkar HH, Mitchell CA (2006) The inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 17:607–622PubMedCrossRefGoogle Scholar
  261. Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS, Mitchell CA (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419:29–49PubMedCrossRefGoogle Scholar
  262. Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE (2002) Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int 62:963–970PubMedCrossRefGoogle Scholar
  263. Osborne RJ, Hamshere MG (2000) A genome-wide map showing common regions of loss of heterozygosity/allelic imbalance in breast cancer. Cancer Res 60:3706–3712PubMedGoogle Scholar
  264. Osborne MA, Zenner G, Lubinus M, Zhang X, Songyang Z, Cantley LC, Majerus P, Burn P, Kochan JP (1996) The inositol 5′-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem 271:29271–29278PubMedCrossRefGoogle Scholar
  265. Parker JA, Metzler M, Georgiou J, Mage M, Roder JC, Rose AM, Hayden MR, Neri C (2007) Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 27:11056–11064PubMedCrossRefGoogle Scholar
  266. Parry RV, Harris SJ, Ward SG (2010) Fine tuning T lymphocytes: a role for the lipid phosphatase SHIP-1. Biochim Biophys Acta 1804:592–597PubMedCrossRefGoogle Scholar
  267. Parvanova AI, Trevisan R, Iliev IP, Dimitrov BD, Vedovato M, Tiengo A, Remuzzi G, Ruggenenti P (2006) Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 55:1456–1462PubMedCrossRefGoogle Scholar
  268. Paternotte N, Zhang J, Vandenbroere I, Backers K, Blero D, Kioka N, Van der Winden JM, Pirson I, Erneux C (2005) SHIP2 interaction with the cytoskeletal protein Vinexin. FEBS J 272:6052–6066PubMedCrossRefGoogle Scholar
  269. Pechstein A, Bacetic J, Vahedi-Faridi A, Gromova K, Sundborger A, Tomlin N, Krainer G, Vorontsova O, Schafer JG, Owe SG, Cousin MA, Saenger W, Shupliakov O, Haucke V (2010) Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc Natl Acad Sci USA 107:4206–4211PubMedCrossRefGoogle Scholar
  270. Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295PubMedCrossRefGoogle Scholar
  271. Pendaries C, Tronchere H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B (2006) PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1034PubMedCrossRefGoogle Scholar
  272. Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3:ra38Google Scholar
  273. Pesesse X, Deleu S, De Smedt F, Drayer L, Erneux C (1997) Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem Biophys Res Commun 239:697–700PubMedCrossRefGoogle Scholar
  274. Poe JC, Fujimoto M, Jansen PJ, Miller AS, Tedder TF (2000) CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem 275:17420–17427PubMedCrossRefGoogle Scholar
  275. Ponting CP (2006) A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22:1031–1035PubMedCrossRefGoogle Scholar
  276. Poretti A, Dietrich Alber F, Brancati F, Dallapiccola B, Valente EM, Boltshauser E (2009) Normal cognitive functions in joubert syndrome. Neuropediatrics 40:287–290PubMedCrossRefGoogle Scholar
  277. Prasad N, Topping RS, Decker SJ (2001) SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol Cell Biol 21:1416–1428PubMedCrossRefGoogle Scholar
  278. Prasad NK (2009) SHIP2 phosphoinositol phosphatase positively regulates EGFR-Akt pathway, CXCR4 expression, and cell migration in MDA-MB-231 breast cancer cells. Int J Oncol 34:97–105PubMedGoogle Scholar
  279. Qin J, Xie Y, Wang B, Hoshino M, Wolff DW, Zhao J, Scofield MA, Dowd FJ, Lin MF, Tu Y (2009) Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. Oncogene 28:1853–1863PubMedCrossRefGoogle Scholar
  280. Quade BJ, Wang TY, Sornberger K, Dal CIN P, Mutter GL, Morton CC (2004) Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer 40:97–108PubMedCrossRefGoogle Scholar
  281. Rajaram MV, Butchar JP, Parsa KV, Cremer TJ, Amer A, Schlesinger LS, Tridandapani S (2009) Akt and SHIP modulate Francisella escape from the phagosome and induction of the Fas-mediated death pathway. PLoS One 4:e7919Google Scholar
  282. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRefGoogle Scholar
  283. Ramjaun AR, McPherson PS (1996) Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem 271:24856–24861PubMedCrossRefGoogle Scholar
  284. Rauh MJ, Kalesnikoff J, Hughes M, Sly L, Lam V, Krystal G (2003) Role of Src homology 2-containing-inositol 5′-phosphatase (SHIP) in mast cells and macrophages. Biochem Soc Trans 31:286–291PubMedCrossRefGoogle Scholar
  285. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI, Mui A, Krystal G (2005) SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374PubMedCrossRefGoogle Scholar
  286. Ringstad N, Nemoto Y, De Camilli P (1997) The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA 94:8569–8574PubMedCrossRefGoogle Scholar
  287. Rivas MP, Kearns BG, Xie Z, Guo S, Sekar MC, Hosaka K, Kagiwada S, York JD, Bankaitis VA (1999) Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy. Mol Biol Cell 10:2235–2250PubMedGoogle Scholar
  288. Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, Boehmelt G (2003) The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem 278:52689–52699PubMedCrossRefGoogle Scholar
  289. Rood BR, Zhang H, Weitman DM, Cogen PH (2002) Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 62:3794–3797PubMedGoogle Scholar
  290. Roongapinun S, Oh SY, Wu F, Panthong A, Zheng T, Zhu Z (2010) Role of SHIP-1 in the adaptive immune responses to aeroallergen in the airway. PLoS One 5:e14174Google Scholar
  291. Roschinger W, Muntau AC, Rudolph G, Roscher AA, Kammerer S (2000) Carrier assessment in families with lowe oculocerebrorenal syndrome: novel mutations in the OCRL1 gene and correlation of direct DNA diagnosis with ocular examination. Mol Genet Metab 69:213–222PubMedCrossRefGoogle Scholar
  292. Rosenfeldt H, Vazquez-Prado J, Gutkind JS (2004) P-REX2, a novel PI-3-kinase sensitive Rac exchange factor. FEBS Lett 572:167–171PubMedCrossRefGoogle Scholar
  293. Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15:24–36PubMedCrossRefGoogle Scholar
  294. Ruschmann J, Ho V, Antignano F, Kuroda E, Lam V, Ibaraki M, Snyder K, Kim C, Flavell RA, Kawakami T, Sly L, Turhan AG, Krystal G (2010) Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Exp Hematol 38:392–402, 402 e1PubMedCrossRefGoogle Scholar
  295. Rusk N, Le PU, Mariggio S, Guay G, Lurisci C, Nabi IR, Corda D, Symons M (2003) Synaptojanin 2 functions at an early step of clathrin-mediated endocytosis. Curr Biol 13:659–663PubMedCrossRefGoogle Scholar
  296. Sachs AJ, David SA, Haider NB, Nystuen AM (2009) Patterned neuroprotection in the Inpp4a(wbl) mutant mouse cerebellum correlates with the expression of Eaat4. PLoS One 4:e8270Google Scholar
  297. Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C (2006) Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24:778–789PubMedCrossRefGoogle Scholar
  298. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48:307–343PubMedCrossRefGoogle Scholar
  299. Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465:497–501PubMedCrossRefGoogle Scholar
  300. Sasaoka T, Hori H, Wada T, Ishiki M, Haruta T, Ishihara H, Kobayashi M (2001) SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia 44:1258–1267PubMedCrossRefGoogle Scholar
  301. Sasaoka T, Kikuchi K, Wada T, Sato A, Hori H, Murakami S, Fukui K, Ishihara H, Aota R, Kimura I, Kobayashi M (2003) Dual role of SRC homology domain 2-containing inositol phosphatase 2 in the regulation of platelet-derived growth factor and insulin-like growth factor I signaling in rat vascular smooth muscle cells. Endocrinology 144:4204–4214PubMedCrossRefGoogle Scholar
  302. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA, Rohrschneider LR, Griffin JD (1999) BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 19:7473–7480PubMedGoogle Scholar
  303. Saxena A, Clark WC, Robertson JT, Ikejiri B, Oldfield EH, Ali IU (1992) Evidence for the involvement of a potential second tumor suppressor gene on chromosome 17 distinct from p53 in malignant astrocytomas. Cancer Res 52:6716–6721PubMedGoogle Scholar
  304. Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282:23878–23891PubMedCrossRefGoogle Scholar
  305. Scheid MP, Huber M, Damen JE, Hughes M, Kang V, Neilsen P, Prestwich GD, Krystal G, Duronio V (2002) Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473: studies using cells from SH2-containing inositol-5-phosphatase knockout mice. J Biol Chem 277:9027–9035PubMedCrossRefGoogle Scholar
  306. Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R (2004) Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 576:9–13PubMedCrossRefGoogle Scholar
  307. Schorr M, Then A, Tahirovic S, Hug N, Mayinger P (2001) The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Curr Biol 11:1421–1426PubMedCrossRefGoogle Scholar
  308. Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, Van der Bliek AM, Jorgensen EM (2003) Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40:749–762PubMedCrossRefGoogle Scholar
  309. Seet LF, Cho S, Hessel A, Dumont DJ (1998) Molecular cloning of multiple isoforms of synaptojanin 2 and assignment of the gene to mouse chromosome 17A2-3.1. Biochem Biophys Res Commun 247:116–122PubMedCrossRefGoogle Scholar
  310. Sekine T, Nozu K, Iyengar R, Fu XJ, Matsuo M, Tanaka R, Iijima K, Matsui E, Harita Y, Inatomi J, Igarashi T (2007) OCRL1 mutations in patients with Dent disease phenotype in Japan. Pediatr Nephrol 22:975–980PubMedCrossRefGoogle Scholar
  311. Sekulic A, Kim SY, Hostetter G, Savage S, Einspahr JG, Prasad A, Sagerman P, Curiel-Lewandrowski C, Krouse R, Bowden GT, Warneke J, Alberts DS, Pittelkow MR, Dicaudo D, Nickoloff BJ, Trent JM, Bittner M (2010) Loss of inositol polyphosphate 5-phosphatase is an early event in development of cutaneous squamous cell carcinoma. Cancer Prev Res (Phila) 3:1277–1283CrossRefGoogle Scholar
  312. Severin S, Gratacap MP, Lenain N, Alvarez L, Hollande E, Penninger JM, Gachet C, Plantavid M, Payrastre B (2007) Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. J Clin Invest 117:944–952PubMedCrossRefGoogle Scholar
  313. Sharma M, Batra J, Mabalirajan U, Sharma S, Nagarkatti R, Aich J, Sharma SK, Niphadkar PV, Ghosh B (2008) A genetic variation in inositol polyphosphate 4 phosphatase A enhances susceptibility to asthma. Am J Respir Crit Care Med 177:712–719PubMedCrossRefGoogle Scholar
  314. Shearman AM, Hudson TJ, Andresen JM, Wu X, Sohn RL, Haluska F, Housman DE, Weiss JS (1996) The gene for schnyder’s crystalline corneal dystrophy maps to human chromosome 1p34.1-p36. Hum Mol Genet 5:1667–1672PubMedCrossRefGoogle Scholar
  315. Shearn CT, Norris FA (2007) Biochemical characterization of the type I inositol polyphosphate 4-phosphatase C2 domain. Biochem Biophys Res Commun 356:255–259PubMedCrossRefGoogle Scholar
  316. Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618PubMedCrossRefGoogle Scholar
  317. Shrimpton AE, Hoopes RR Jr, Knohl SJ, Hueber P, Reed AA, Christie PT, Igarashi T, Lee P, Lehman A, White C, Milford DV, Sanchez MR, Unwin R, Wrong OM, Thakker RV, Scheinman SJ (2009) OCRL1 mutations in Dent 2 patients suggest a mechanism for phenotypic variability. Nephron Physiol 112:p27--p36PubMedCrossRefGoogle Scholar
  318. Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO, Garcia K, Stitt TN, Yancopoulos GD, Wiegand SJ, Glass DJ (2005) Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med 11:199–205PubMedCrossRefGoogle Scholar
  319. Sly LM, Hamilton MJ, Kuroda E, Ho VW, Antignano FL, Omeis SL, Van Netten-Thomas CJ, Wong D, Brugger HK, Williams O, Feldman ME, Houseman BT, Fiedler D, Shokat KM, Krystal G (2009) SHIP prevents lipopolysaccharide from triggering an antiviral response in mice. Blood 113:2945–2954PubMedCrossRefGoogle Scholar
  320. Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM, Luo J, Benovic JL, Klein-Szanto A, Yagi H, Gutkind JS, Parsons RE, Kazanietz MG (2010) Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell 40:877–892PubMedCrossRefGoogle Scholar
  321. Speed CJ, Little PJ, Hayman JA, Mitchell CA (1996) Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation. EMBO J 15:4852–4861PubMedGoogle Scholar
  322. Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA, Baron AE, Keith RL, Nemenoff RA, Malkinson AM, Geraci MW (2005) Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol 167:1763–1775PubMedCrossRefGoogle Scholar
  323. Stephens LA, Gray D, Anderton SM (2005) CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci USA 102:17418–17423PubMedCrossRefGoogle Scholar
  324. Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404PubMedCrossRefGoogle Scholar
  325. Su D, Ma S, Liu P, Jiang Z, Lv W, Zhang Y, Deng Q, Smith S, Yu H (2007) Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer 56:281–288PubMedCrossRefGoogle Scholar
  326. Sun J, Liu W, Adams TS, Li X, Turner AR, Chang B, Kim JW, Zheng SL, Isaacs WB, Xu J (2007) DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 67:692–700PubMedCrossRefGoogle Scholar
  327. Suwa A, Yamamoto T, Sawada A, Minoura K, Hosogai N, Tahara A, Kurama T, Shimokawa T, Aramori I (2009) Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol 158:879–887PubMedCrossRefGoogle Scholar
  328. Swan LE, Tomasini L, Pirruccello M, Lunardi J, De Camilli P (2010) Two closely related endocytic proteins that share a common OCRL-binding motif with APPL1. Proc Natl Acad Sci USA 107:3511–3516PubMedCrossRefGoogle Scholar
  329. Szentpetery Z, Varnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci USA 107:8225–8230PubMedCrossRefGoogle Scholar
  330. Tahirovic S, Schorr M, Mayinger P (2005) Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic 6:116–130PubMedCrossRefGoogle Scholar
  331. Takabayashi T, Xie MJ, Takeuchi S, Kawasaki M, Yagi H, Okamoto M, Tariqur RM, Malik F, Kuroda K, Kubota C, Fujieda S, Nagano T, Sato M (2010) LL5beta directs the translocation of filamin A and SHIP2 to sites of phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) accumulation, and PtdIns(3,4,5)P3 localization is mutually modified by co-recruited SHIP2. J Biol Chem 285:16155–16165Google Scholar
  332. Takahashi H, Masuda K, Ando T, Kobayashi T, Honda H (2004) Prognostic predictor with multiple fuzzy neural models using expression profiles from DNA microarray for metastases of breast cancer. J Biosci Bioeng 98:193–199PubMedGoogle Scholar
  333. Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL, Ross FP (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–949PubMedCrossRefGoogle Scholar
  334. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y (2005) Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 11:7234–7242PubMedCrossRefGoogle Scholar
  335. Tang J, Qi X, Mercola D, Han J, Chen G (2005) Essential role of p38gamma in K-Ras transformation independent of phosphorylation. Journal of Biological Chemistry 280:23910–23917PubMedCrossRefGoogle Scholar
  336. Tarasenko T, Kole HK, Chi AW, Mentink-Kane MM, Wynn TA, Bolland S (2007) T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc Natl Acad Sci USA 104:11382–11387PubMedCrossRefGoogle Scholar
  337. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM, Moodie S, Stokoe D (2000) 5′ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 20:6860–6871PubMedCrossRefGoogle Scholar
  338. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22PubMedCrossRefGoogle Scholar
  339. Tobin JL, Beales PL (2009) The nonmotile ciliopathies. Genet Med 11:386–402PubMedCrossRefGoogle Scholar
  340. Toftgard R (2009) Two sides to cilia in cancer. Nat Med 15:994–996PubMedCrossRefGoogle Scholar
  341. Tomlinson MG, Heath VL, Turck CW, Watson SP, Weiss A (2004) SHIP family inositol phosphatases interact with and negatively regulate the Tec tyrosine kinase. J Biol Chem 279:55089–55096PubMedCrossRefGoogle Scholar
  342. Trapani JG, Obholzer N, Mo W, Brockerhoff SE, Nicolson T (2009) Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PLoS Genet 5:e1000480Google Scholar
  343. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331PubMedCrossRefGoogle Scholar
  344. Trumel C, Payrastre B, Plantavid M, Hechler B, Viala C, Presek P, Martinson EA, Cazenave JP, Chap H, Gachet C (1999) A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 94:4156–4165PubMedGoogle Scholar
  345. Tsujishita Y, Guo S, Stolz LE, York JD, Hurley JH (2001) Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell 105:379–389PubMedCrossRefGoogle Scholar
  346. Tu Z, Ninos JM, Ma Z, Wang JW, Lemos MP, Desponts C, Ghansah T, Howson JM, Kerr WG (2001) Embryonic and hematopoietic stem cells express a novel SH2-containing inositol 5′-phosphatase isoform that partners with the Grb2 adapter protein. Blood 98:2028–2038PubMedCrossRefGoogle Scholar
  347. Ungewickell AJ, Majerus PW (1999) Increased levels of plasma lysosomal enzymes in patients with Lowe syndrome. Proc Natl Acad Sci USA 96:13342–13344PubMedCrossRefGoogle Scholar
  348. Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, Feng Y, Galyov EE, Wilson M, Majerus PW (2005) The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci USA 102:18854–18859PubMedCrossRefGoogle Scholar
  349. Urano D, Nakata A, Mizuno N, Tago K, Itoh H (2008) Domain-domain interaction of P-Rex1 is essential for the activation and inhibition by G protein betagamma subunits and PKA. Cell Signal 20:1545–1554PubMedCrossRefGoogle Scholar
  350. Utsch B, Bokenkamp A, Benz MR, Besbas N, Dotsch J, Franke I, Frund S, Gok F, Hoppe B, Karle S, Kuwertz-Broking E, Laube G, Neb M, Nuutinen M, Ozaltin F, Rascher W, Ring T, Tasic V, Van Wijk JA, Ludwig M (2006) Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 48:942 e1–e14PubMedCrossRefGoogle Scholar
  351. Van Epps HA, Hayashi M, Lucast L, Stearns GW, Hurley JB, De Camilli P, Brockerhoff SE (2004) The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J Neurosci 24:8641–8650PubMedCrossRefGoogle Scholar
  352. Van’T Veer LJ, Dai H, Van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, Van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  353. Varsano T, Dong MQ, Niesman I, Gacula H, Lou X, Ma T, Testa JR, Yates JR 3rd, Farquhar MG (2006) GIPC is recruited by APPL to peripheral TrkA endosomes and regulates TrkA trafficking and signaling. Mol Cell Biol 26:8942–8952PubMedCrossRefGoogle Scholar
  354. Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, Mehta SQ, Cao Y, Roos J, Bellen HJ (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40:733–748PubMedCrossRefGoogle Scholar
  355. Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, Schmidt C, Akeson EC, Wenk MR, Cimasoni L, Arancio O, Davisson MT, Antonarakis SE, Gardiner K, De Camilli P, Di Paolo G (2008) Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA 105:9415–9420PubMedCrossRefGoogle Scholar
  356. Vyas P, Norris FA, Joseph R, Majerus PW, Orkin SH (2000) Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1. Proc Natl Acad Sci USA 97:13696–13701PubMedCrossRefGoogle Scholar
  357. Wada T, Sasaoka T, Funaki M, Hori H, Murakami S, Ishiki M, Haruta T, Asano T, Ogawa W, Ishihara H, Kobayashi M (2001) Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5¢-phosphatase catalytic activity. Mol Cell Biol 21:1633–1646PubMedCrossRefGoogle Scholar
  358. Wang JW, Howson JM, Ghansah T, Desponts C, Ninos JM, May SL, Nguyen KH, Toyama-Sorimachi N, Kerr WG (2002) Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science 295:2094–2097PubMedCrossRefGoogle Scholar
  359. Wang Z, Dong X, Li Z, Smith JD, Wu D (2008) Lack of a significant role of P-Rex1, a major regulator of macrophage Rac1 activation and chemotaxis, in atherogenesis. Prostaglandins Other Lipid Mediat 87:9–13PubMedCrossRefGoogle Scholar
  360. Waters JE, Astle MV, Ooms LM, Balamatsias D, Gurung R, Mitchell CA (2008) P-Rex1—a multidomain protein that regulates neurite differentiation. J Cell Sci 121:2892–2903PubMedCrossRefGoogle Scholar
  361. Wei HC, Sanny J, Shu H, Baillie DL, Brill JA, Price JV, Harden N (2003) The Sac1 lipid phosphatase regulates cell shape change and the JNK cascade during dorsal closure in Drosophila. Curr Biol 13:1882–1887PubMedCrossRefGoogle Scholar
  362. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809–821PubMedCrossRefGoogle Scholar
  363. Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, Okkenhaug K, Coadwell WJ, Andrews SR, Thelen M, Jones GE, Hawkins PT, Stephens LR (2005) P-Rex1 regulates neutrophil function. Curr Biol 15:1867–1873PubMedCrossRefGoogle Scholar
  364. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, Nevins JR (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98:11462–11467PubMedCrossRefGoogle Scholar
  365. Whisstock JC, Romero S, Gurung R, Nandurkar H, Ooms LM, Bottomley SP, Mitchell CA (2000) The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J Biol Chem 275:37055–37061PubMedCrossRefGoogle Scholar
  366. Whitters EA, Cleves AE, McGee TP, Skinner HB, Bankaitis VA (1993) SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122:79–94PubMedCrossRefGoogle Scholar
  367. Williams C, Choudhury R, McKenzie E, Lowe M (2007) Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway. J Cell Sci 120:3941–3951PubMedCrossRefGoogle Scholar
  368. Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavanaugh WM, Tempst P, Clarkson B (1999) A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 93:2707–2720PubMedGoogle Scholar
  369. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, Fiel I, Thung S, Mazzaferro V, Bruix J, Bottinger E, Friedman S, Waxman S, Llovet JM (2007) Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45:938–947PubMedCrossRefGoogle Scholar
  370. Yang F, Foekens JA, Yu J, Sieuwerts AM, Timmermans M, Klijn JG M., Atkins D, Wang Y, Jiang Y (2005) Laser microdissection and microarray analysis of breast tumors reveal ER-[alpha] related genes and pathways. Oncogene 25:1413–1419CrossRefGoogle Scholar
  371. Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott MP, Banerjee U (2010) Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell 19:54–65PubMedCrossRefGoogle Scholar
  372. Ye C, Xi PC, Hu XG (2003a) Clinical analysis of uncinate process carcinoma of the pancreas. Hepatobiliary Pancreat Dis Int 2:605–608Google Scholar
  373. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, Ye SL, Liu YK, Tang ZY, Wang XW (2003b) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423CrossRefGoogle Scholar
  374. Yeow-Fong L, Lim L, Manser E (2005) SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett 579:5040–5048PubMedCrossRefGoogle Scholar
  375. Yoon JH, Lee JM, Namkoong SE, Bae SM, Kim YW, Han SJ, Cho YL, Nam GH, Kim CK, Seo JS, Ahn WS (2003) cDNA microarray analysis of gene expression profiles associated with cervical cancer. Cancer Res Treat 35:451–459Google Scholar
  376. Yoshizawa M, Kawauchi T, Sone M, Nishimura YV, Terao M, Chihama K, Nabeshima Y, Hoshino M (2005) Involvement of a Rac activator, P-Rex1, in neurotrophin-derived signaling and neuronal migration. J Neurosci 25:4406–4419PubMedCrossRefGoogle Scholar
  377. Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 105:19300–19305PubMedCrossRefGoogle Scholar
  378. Yuan Y, Gao X, Guo N, Zhang H, Xie Z, Jin M, Li B, Yu L, Jing N (2007) rSac3, a novel Sac domain phosphoinositide phosphatase, promotes neurite outgrowth in PC12 cells. Cell Res 17:919–932PubMedCrossRefGoogle Scholar
  379. Zhan FH, Barlogie B, John DS Jr (2007) Gene expression profiling defines a high-risk entity of multiple myeloma. Zhong Nan Da Xue Xue Bao Yi Xue Ban 32:191–203PubMedGoogle Scholar
  380. Zhang X, Jefferson AB, Auethavekiat V, Majerus PW (1995) The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci USA 92:4853–4856PubMedCrossRefGoogle Scholar
  381. Zhang X, Hartz PA, Philip E, Racusen LC, Majerus PW (1998) Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:1574–1582PubMedCrossRefGoogle Scholar
  382. Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J (2008) Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131:1990–2001PubMedCrossRefGoogle Scholar
  383. Zhao W, Li ZG, Wu MY, Geng LZ, Shi HW, Zhang YH, Wu RH (2003a) [Analysis of 21 children with acute non-lymphoid leukemia carrying AML1/ETO fusion gene]. Zhonghua Er Ke Za Zhi 41:325–328Google Scholar
  384. Zhao X, He M, Wan D, Ye Y, He Y, Han L, Guo M, Huang Y, Qin W, Wang MW, Chong W, Chen J, Zhang L, Yang N, Xu B, Wu M, Zuo L, Gu J (2003b) The minimum LOH region defined on chromosome 17p13.3 in human hepatocellular carcinoma with gene content analysis. Cancer Lett 190:221–232CrossRefGoogle Scholar
  385. Zhao T, Nalbant P, Hoshino M, Dong X, Wu D, Bokoch GM (2007) Signaling requirements for translocation of P-Rex1, a key Rac2 exchange factor involved in chemoattractant-stimulated human neutrophil function. J Leukoc Biol 81:1127–1136PubMedCrossRefGoogle Scholar
  386. Zhong R, Ye ZH (2003) The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol 132:544–555PubMedCrossRefGoogle Scholar
  387. Zhong R, Burk DH, Nairn CJ, Wood-Jones A, Morrison WH 3RD, Ye ZH (2005) Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 17:1449–1466PubMedCrossRefGoogle Scholar
  388. Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM, Epstein JA (2009) Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 105:1240–1247PubMedCrossRefGoogle Scholar
  389. Zou J, Marjanovic J, Kisseleva MV, Wilson M, Majerus PW (2007) Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci USA 104:16834–16839PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jennifer M. Dyson
    • 1
  • Clare G. Fedele
    • 1
  • Elizabeth M. Davies
    • 1
  • Jelena Becanovic
    • 1
  • Christina A. Mitchell
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia

Personalised recommendations