Horizontal Gene Transfer and the Tree of Life

  • Jan SappEmail author
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 22)


The search for a universal tree of life, once considered outside the prevue of evolutionary biology, has led to a revolution in contemporary evolutionary biology while transcending its basic assumptions. Three primary lineages, the pervasiveness of horizontal gene transfer, and fundamental evolutionary role of symbiosis are at the center of microbial phylogenetic concepts today. Still, controversies remain. While many microbial phylogeneticists maintain that there is a small “core” of genes with “essential functions” that are refractory to HGT and through which one can determine the primary organismal lineages, others deny the existence of such a core and therefore the reality of organismal lineages at any taxonomic level.


Horizontal Gene Transfer Natural Kind Stable Core Primary Lineage Informational Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly supported by the Social Sciences and Humanities Research Council of Canada.


  1. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568PubMedCrossRefGoogle Scholar
  2. Charlebois RL, Doolittle WF (2004) Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res 1:2469–2477CrossRefGoogle Scholar
  3. Chatton E (1925) Pansporella Perplexa reflexions sur la biologie et la phylogenie des protozoaires. Ann Sci Nat Zool VII(10):1–84Google Scholar
  4. Copeland HF (1938) The kingdoms of organisms. The Quarterly Review of Biology 13:383–420Google Scholar
  5. Darwin C (1859) On the origin of species, Facsimile edition of 1859. Harvard University Press, Cambridge 1969Google Scholar
  6. Darwin CR, letter to Hooker JD (1 February 1871) In: Darwin F (ed) The life and letters of Charles Darwin, (1898), vol II. Basic Books, New York, 1959, reprint, pp 202–203Google Scholar
  7. Dobell C (1932) Antony van Leeuwenhoek and his “Little animals”. Harcourt, Brace & Co, New YorkGoogle Scholar
  8. Doolittle WF (1996) At the core of the archaea. Proc Natl Acad Sci USA 93:8797–8799PubMedCrossRefGoogle Scholar
  9. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128PubMedCrossRefGoogle Scholar
  10. Doolittle WF (2000) Uprooting the tree of life. Sci Am 282:90–95PubMedCrossRefGoogle Scholar
  11. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049PubMedCrossRefGoogle Scholar
  12. Doolittle WF, Boucher Y, Nesbø CL, Douady CJ, Andersson JO, Roger AJ (2003) How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B 358:39–58CrossRefGoogle Scholar
  13. Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767PubMedCrossRefGoogle Scholar
  14. Forterre P, Philippe H (1999) The last universal common ancestor (LUCA), simple or complex. Biol Bull 196:373–377PubMedCrossRefGoogle Scholar
  15. Fox G, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luerhsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedCrossRefGoogle Scholar
  16. Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima TJ, Konishi K, Yoshida M (1989) Evolution of the vacuolar H  +  −ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665PubMedCrossRefGoogle Scholar
  17. Gogarten P, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238PubMedCrossRefGoogle Scholar
  18. Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42PubMedGoogle Scholar
  19. Haeckel E (1866) Morphologie der Organismen, vol 2. Reimer, BerlinCrossRefGoogle Scholar
  20. Haeckel E (1892) The history of creation, vol II, 6th edn. Appleton & co, New YorkGoogle Scholar
  21. Haldane JBS (1929) The origin of life. Ration Annu 148:3–10Google Scholar
  22. Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370PubMedCrossRefGoogle Scholar
  23. Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425PubMedCrossRefGoogle Scholar
  24. Iwabe N, Kma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359PubMedCrossRefGoogle Scholar
  25. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806PubMedCrossRefGoogle Scholar
  26. Kluyver J, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralbl f Bakt 94(2):369–402Google Scholar
  27. Lamarck JB (1809) Zoological philosophy (trans Elliot H). The University of Chicago Press, Chicago 1984Google Scholar
  28. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417PubMedCrossRefGoogle Scholar
  29. Lederberg J (1952) Cell genetics and hereditary symbiosis. Phys Rev 32:403–430Google Scholar
  30. Luria SE, Burrous J (1957) Hybridization between Escherichia coli and Shigella. J Bacteriol 74:461–476PubMedGoogle Scholar
  31. Lwoff A (1957) The concept of virus. J Gen Microbiol 17:239–253PubMedGoogle Scholar
  32. Oparin AI (1938) The origin of life. Dover, New YorkGoogle Scholar
  33. Portier P (1918) Les Symbiotes. Masson, ParisGoogle Scholar
  34. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274CrossRefGoogle Scholar
  35. Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New YorkGoogle Scholar
  36. Sapp J (1998) Freewheeling centrioles. Hist Philos Life Sci 20:255–290PubMedGoogle Scholar
  37. Sapp J (2005a) The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol Mol Biol Rev 69:292–305PubMedCrossRefGoogle Scholar
  38. Sapp J (ed) (2005b) Microbial phylogeny and evolution: concepts and controversies. Oxford University Press, New YorkGoogle Scholar
  39. Sapp J (2009a) The new foundations of evolution. On the tree of life. Oxford University Press, New YorkGoogle Scholar
  40. Sapp J (2009b) Transcending Darwinism: thinking horizontally on the tree of life. Hist Philos Life Sci 31:161–182PubMedGoogle Scholar
  41. Sapp J, Carrapico F, Zolotonosov M (2002) The hidden face of constantin Merezhkowsky, history and philosophy of the life sciences 24:421–449PubMedGoogle Scholar
  42. Stanier RY (1970) Some aspects of the biology of cells and their possible evolutionary significance. In: Charles HP, Knight BC (eds) Organization and control in prokaryotic cells. Twentieth symposium of the society for general microbiology. Cambridge University Press, Cambridge, pp 1–38Google Scholar
  43. Stanier RY, van Niel CB (1941) The main outlines of bacterial classification. J Bacteriol 42:437–466PubMedGoogle Scholar
  44. Stanier RY, van Niel CB (1962) The concept of a bacterium. Archiv Für Mikrobiologie 42:17–35PubMedCrossRefGoogle Scholar
  45. Stanier R, Doudoroff M, Adelberg E (1957) The microbial world. Prentice-Hall, Englewood CliffsGoogle Scholar
  46. Stanier R, Doudoroff M, Adelberg E (1963) The microbial world, 2nd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  47. Stocker BAD (1955) Bacteriophages and bacterial classification. J Gen Microbiol 12:375–381PubMedGoogle Scholar
  48. van Niel CB (1955) Classification and taxonomy of the bacteria and blue green algae. In: Kessel EL (ed) A century of progress in the natural sciences 1853–1953. California Academy of Sciences, San Francisco, pp 89–114Google Scholar
  49. Wallin IE (1927) Symbionticism and the origin of species. William and Wilkins, BaltimoreCrossRefGoogle Scholar
  50. Wilson EB (1925) The cell in development and heredity. Macmillan, New YorkGoogle Scholar
  51. Woese CR (1979) A proposal concerning the origin of life on the planet earth. J Mol Evol 13:95–101PubMedCrossRefGoogle Scholar
  52. Woese CR (1980) An alternative to the Oparin view of the primeval sequence. In: Halvorson HO, Van Holde KE (eds) The origins of life and evolution. Alan R Liss Inc, New York, pp 65–76Google Scholar
  53. Woese CR (1982) Archaebacteria and cellular origins: an overview. In: Kandler O (ed) Archaebacteria. Proceedings of the 1st international workshop on archaebacteria, Munich, June 27th–July 1st 1981. Gustav Fischer, Stuttgart, pp 1–17Google Scholar
  54. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  55. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859PubMedCrossRefGoogle Scholar
  56. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396PubMedCrossRefGoogle Scholar
  57. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747PubMedCrossRefGoogle Scholar
  58. Woese CR, Fox GE (1977a) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedCrossRefGoogle Scholar
  59. Woese CR, Fox GE (1977b) The concept of cellular evolution. J Mol Evol 10:1–6PubMedCrossRefGoogle Scholar
  60. Woese CR, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(1990):4576–4579PubMedCrossRefGoogle Scholar
  61. Woolhouse WH (1967) A review of the plastids by JTO Kirk and RAE Tilney-Bassett. New Phytol 66:832–833Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of BiologyYork UniversityTorontoCanada

Personalised recommendations