Calcium Signaling pp 1219-1247

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 740) | Cite as

Voltage-Gated Ca2+ Channel Mediated Ca2+ Influx in Epileptogenesis

  • Magdalena Siwek
  • Christina Henseler
  • Karl Broich
  • Anna Papazoglou
  • Marco Weiergräber


Voltage- and ligand-gated ion channels are key elements in the etiopathogenesis of various forms of epilepsy. In this chapter, we present an overview of the functional implications of voltage-gated Ca2+ channels in modulating internal Ca2+ level fluctuations and generating ictiform/epileptiform cellular electrophysiological activity. A specific focus will be on the fascinating and evolving field of high-voltage activated (HVA) Non-L-type Cav2.3 R-type channels and low-voltage activated (LVA) Cav3.1–3.3 T-type Ca2+ channels in the genesis of plateau potentials and excessive rebound bursting. Plateau potentials have been characterised in the hippocampus and were shown to be triggered by Cav2.3 which subsequently activate CNG channels that mediate long-lasting plateaus. In the thalamocortical network, a complex ion channel armamentarium is involved in regulating a complex balance of burst and tonic mode activity. Recent findings point to an outstanding role of R- and T-type channels in both thalamocortical eurhythmia and pathophysiological ­aberrations. Thus, pharmacological modulation of voltage-gated Ca2+-channels might prove more and more important in treatment of neurological and psychiatric disorder such as schizophrenia, mania, dementia and epilepsy.


Epilepsy Hippocampus Plateau potentials Rebound burst firing Voltage-gated Ca2+ channels 





Antiepileptic drug




Central nervous system


Diacyl glycerol


Genetic absence epilepsy rat from Strasbourg


Hyperpolarization and cyclic-nucleotide gated non-specific cation


High voltage activated


Inferior colliculus


Idiopathic generalized epilepsies






Low voltage activated


Muscarinic receptor


Protein kinase A


Protein kinase C


Phospholipase C


Reticular thalamic nucleus


Slow afterhyperpolarisation


Spontaneous recurrent seizures




Spike-wave discharge


Slow-wave sleep


Tottering mouse model


Voltage-gated calcium channels


Wistar Albino Glaxo rats


  1. 1.
    Forsgren L, Beghi E, Oun A, Sillanpaa M (2005) The epidemiology of epilepsy in Europe – a systematic review. Eur J Neurol 12:245–253PubMedCrossRefGoogle Scholar
  2. 2.
    Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, Dibbens LM (2005) Susceptibility genes for complex epilepsy. Hum Mol Genet 14:R243–R249PubMedCrossRefGoogle Scholar
  3. 3.
    Turnbull J, Lohi H, Kearney JA, Rouleau GA, Delgado-Escueta AV, Meisler MH, Cossette P, Minassian BA (2005) Sacred disease secrets revealed: the genetics of human epilepsy. Hum Mol Genet 14(2):2491–2500CrossRefGoogle Scholar
  4. 4.
    Puranam RS, McNamara JO (1999) Seizure disorders in mutant mice: relevance to human epilepsies. Curr Opin Neurobiol 9:281–287PubMedCrossRefGoogle Scholar
  5. 5.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205PubMedCrossRefGoogle Scholar
  6. 6.
    Yang SN, Berggren PO (2005) beta-cell Ca-V channel regulation in physiology and pathophysiology. Am J Physiol Endocrinol Metab 288:E16–E28PubMedCrossRefGoogle Scholar
  7. 7.
    Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann NY Acad Sci 868:144–159PubMedCrossRefGoogle Scholar
  8. 8.
    Bito H, Deisseroth K, Tsien RW (1997) Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol 7:419–429PubMedCrossRefGoogle Scholar
  9. 9.
    Hofmann F, Lacinová L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87PubMedCrossRefGoogle Scholar
  10. 10.
    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555PubMedCrossRefGoogle Scholar
  11. 11.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  12. 12.
    Lacinova L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24(Suppl 1):1–78PubMedGoogle Scholar
  13. 13.
    Pietrobon D (2005) Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 15:257–265PubMedCrossRefGoogle Scholar
  14. 14.
    Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243PubMedCrossRefGoogle Scholar
  15. 15.
    Pinto A, Moss F, Lang B, Boot J, Brust P, Williams M, Stauderman K, Harpold M, Newsom-Davis J (1998) Differential effect of Lambert-Eaton myasthenic syndrome immunoglobulin on cloned neuronal voltage-gated calcium channels. Ann NY Acad Sci 841:687–690PubMedCrossRefGoogle Scholar
  16. 16.
    Missiaen L, Robberecht W, Van Den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H (2000) Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium 28:1–21PubMedCrossRefGoogle Scholar
  17. 17.
    Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Cott KM (1998) Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267PubMedCrossRefGoogle Scholar
  18. 18.
    Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31PubMedCrossRefGoogle Scholar
  19. 19.
    Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617PubMedCrossRefGoogle Scholar
  20. 20.
    Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling nagoya (tg rol). J Neurosci 20:5654–5662PubMedGoogle Scholar
  21. 21.
    Zwingman TA, Neumann PE, Noebels JL, Herrup K (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21:1169–1178PubMedGoogle Scholar
  22. 22.
    Burgess DL, Jones JM, Meisler MH, Noebels JL (1997) Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88:385–392PubMedCrossRefGoogle Scholar
  23. 23.
    Letts VA, Felix R, Biddlecome GH, Arikkath J, Mahaffey CL, Valenzuela A, Bartlett FS II, Mori Y, Campbell KP, Frankel WN (1998) The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet 19:340–347PubMedCrossRefGoogle Scholar
  24. 24.
    Burgess DL, Noebels JL (1999) Voltage-dependent calcium channel mutations in neurological disease. Ann NY Acad Sci 868:199–212PubMedCrossRefGoogle Scholar
  25. 25.
    Gao BN, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, Wei MH, Lerman M, Lee JH, Perez-Reyes E, Bezprozvanny I, Minna JD (2000) Functional properties of a new voltage-dependent calcium channel α2δ auxiliary subunit gene (CACNA2D2). J Biol Chem 275:12237–12242PubMedCrossRefGoogle Scholar
  26. 26.
    Barclay J, Balaguero N, Mione M, Ackerman SL, Letts VA, Brodbeck J, Canti C, Meir A, Page KM, Kusumi K, Perez-Reyes E, Lander ES, Frankel WN, Gardiner RM, Dolphin AC, Rees M (2001) Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci 21:6095–6104PubMedGoogle Scholar
  27. 27.
    Brill J, Klocke R, Paul D, Boison D, Gouder N, Klugbauer N, Hofmann F, Becker CM, Becker K (2004) Entla: a novel epileptic and ataxic Cacna2d2 mutant of the mouse. J Biol Chem 279(8):7322–7330PubMedCrossRefGoogle Scholar
  28. 28.
    Williams ME, Marubio LM, Deal CR, Hans M, Brust PF, Philipson LH, Miller RJ, Johnson EC, Harpold MM, Ellis SB (1994) Structure and functional characterization of neuronal α1E calcium channel subtypes. J Biol Chem 269:22347–22357PubMedGoogle Scholar
  29. 29.
    Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–564PubMedCrossRefGoogle Scholar
  30. 30.
    Gomora JC, Daud AN, Weiergraber M, Perez-Reyes E (2001) Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol Pharmacol 60:1121–1132PubMedGoogle Scholar
  31. 31.
    Remy S, Beck H (2006) Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129:18–35PubMedCrossRefGoogle Scholar
  32. 32.
    Sills GJ (2006) The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 6:108–113PubMedCrossRefGoogle Scholar
  33. 33.
    Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) Ca(V)2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154PubMedGoogle Scholar
  34. 34.
    Pereverzev A, Salehi A, Mikhna M, Renstrom E, Hescheler J, Weiergraber M, Smyth N, Schneider T (2005) The ablation of the Cav2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of Langerhans. Eur J Pharmacol 511:65–72PubMedCrossRefGoogle Scholar
  35. 35.
    Lu Z-L, Pereverzev A, Liu H-L, Weiergraber M, Henry M, Krieger A, Smyth N, Hescheler J, Schneider T (2004) Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (α1E) subunit of voltage-gated Ca2+ channels. Cell Physiol Biochem 14:11–22PubMedCrossRefGoogle Scholar
  36. 36.
    Weiergräber M, Henry M, Südkamp M, De Vivie ER, Hescheler J, Schneider T (2005) Ablation of Cav2.3/E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res Cardiol 100:1–13PubMedCrossRefGoogle Scholar
  37. 37.
    Sakata Y, Saegusa H, Zong SQ, Osanai M, Murakoshi T, Shimizu Y, Noda T, Aso T, Tanabe T (2002) Cav2.3 (α1E) Ca2+ channel participates in the control of sperm function. FEBS Lett 516:229–233PubMedCrossRefGoogle Scholar
  38. 38.
    Grabsch H, Pereverzev A, Weiergräber M, Schramm M, Henry M, Vajna R, Beattie RE, Volsen SG, Klöckner U, Hescheler J, Schneider T (1999) Immunohistochemical detection of α1E voltage-gated Ca2+ channel isoforms in cerebellum, INS-1 cells, and neuroendocrine cells of the digestive system. J Histochem Cytochem 47:981–993PubMedCrossRefGoogle Scholar
  39. 39.
    Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci USA 100:12450–12455PubMedCrossRefGoogle Scholar
  40. 40.
    Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39:483–496PubMedCrossRefGoogle Scholar
  41. 41.
    Lee SC, Choi S, Lee T, Kim HL, Chin H, Shin HS (2002) Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc Natl Acad Sci USA 99:3276–3281PubMedCrossRefGoogle Scholar
  42. 42.
    Saegusa H, Kurihara T, Zong SQ, Minowa O, Kazuno AA, Han WH, Matsuda Y, Yamanaka H, Osanai M, Noda T, Tanabe T (2000) Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 97:6132–6137PubMedCrossRefGoogle Scholar
  43. 43.
    Chen S, Ren YQ, Bing RJ, Hillman DE (2000) Alpha 1E subunit of the R-type calcium channel is associated with myelinogenesis. J Neurocytol 29:719–728PubMedCrossRefGoogle Scholar
  44. 44.
    Toriyama H, Wang L, Saegusa H, Zong S, Osanai M, Murakoshi T, Noda T, Ohno K, Tanabe T (2002) Role of Cav2.3 (alpha1E) Ca2+ channel in ischemic neuronal injury. Neuroreport 13:261–265PubMedCrossRefGoogle Scholar
  45. 45.
    Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC (2005) Emergence of a R-type Ca2+ channel (Cav2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res 96:419–426PubMedCrossRefGoogle Scholar
  46. 46.
    Day NC, McCormack AL, Ince PG, Shaw PJ, Craig PJ, Smith W, Beattie RE, Ellis SB, Harpold MM, Lodge D, Volsen SG (1996) Distribution of voltage-dependent calcium channel (VDCC) beta subunits in the human hippocampus. Neuropathol Appl Neurobiol 22:458Google Scholar
  47. 47.
    Hanson JE, Smith Y (2002) Subcellular distribution of high-voltage-activated calcium channel subtypes in rat globus pallidus neurons. J Comp Neurol 442:89–98PubMedCrossRefGoogle Scholar
  48. 48.
    Wu LG, Westenbroek RE, Borst JGG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736PubMedGoogle Scholar
  49. 49.
    Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 9:1099–1115PubMedCrossRefGoogle Scholar
  50. 50.
    Day NC, Wood SJ, Ince PG, Volsen SG, Smith W, Slater CR, Shaw PJ (1997) Differential localization of voltage-dependent calcium channel α1 subunits at the human and rat neuromuscular junction. J Neurosci 17:6226–6235PubMedGoogle Scholar
  51. 51.
    Kamp MA, Krieger A, Henry M, Hescheler J, Weiergraber M, Schneider T (2005) Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter release. Eur J Neurosci 21:1617–1625PubMedCrossRefGoogle Scholar
  52. 52.
    Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TVB, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution XX of the α1A subunits of brain calcium channels. J Neurosci 15:6403–6418PubMedGoogle Scholar
  53. 53.
    Tank DW, Sugimori M, Connor JA, Llinas RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–777PubMedCrossRefGoogle Scholar
  54. 54.
    Pereverzev A, Leroy J, Krieger A, Malecot CO, Hescheler J, Pfitzer G, Klockner U, Schneider T (2002) Alternate splicing in the cytosolic II–III loop and the carboxy terminus of human E-type voltage-gated Ca2+ channels: electrophysiological characterization of isoforms. Mol Cell Neurosci 21:352–365PubMedCrossRefGoogle Scholar
  55. 55.
    Leroy J, Pereverzev A, Vajna R, Qin N, Pfitzer G, Hescheler J, Malécot CO, Schneider T, Klöckner U (2003) Ca2+-sensitive regulation of E-type Ca2+ channel activity depends on an arginine rich region in the cytosolic II–III loop. Eur J Neurosci 18:841–855PubMedCrossRefGoogle Scholar
  56. 56.
    Klöckner U, Pereverzev A, Leroy J, Krieger A, Vajna R, Hescheler J, Pfitzer G, Malecot CO, Schneider T (2004) The cytosolic II–III loop of Cav2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. Eur J Neurosci 19:2659–2668PubMedCrossRefGoogle Scholar
  57. 57.
    Krieger A, Radhakrishnan K, Pereverzev A, Siapich SA, Banat M, Kamp MA, Leroy J, Klockner U, Hescheler J, Weiergraber M, Schneider T (2006) The molecular chaperone hsp70 interacts with the cytosolic II–III loop of the Cav2.3 E-type voltagegated Ca2+ channel. Cell Physiol Biochem 17:97–110PubMedCrossRefGoogle Scholar
  58. 58.
    Weiergraber M, Henry M, Krieger A, Kamp M, Radhakrishnan K, Hescheler J, Schneider T (2006) Altered seizure susceptibility in mice lacking the Cav2.3 E-type Ca2+ channel. Epilepsia 47:839–850PubMedCrossRefGoogle Scholar
  59. 59.
    Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME (2000) Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2:173–177PubMedCrossRefGoogle Scholar
  60. 60.
    Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39:951–960PubMedCrossRefGoogle Scholar
  61. 61.
    Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein βgamma subunits. Nature 380:258–262PubMedCrossRefGoogle Scholar
  62. 62.
    Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-proteins βτ subunits. Nature 380:255–258PubMedCrossRefGoogle Scholar
  63. 63.
    De Waard M, Liu H, Walker D, Scott VES, Gurnett CA, Campbell KP (1997) Direct binding of G-protein βgamma complex to voltage-dependent calcium channels. Nature 385:446–450PubMedCrossRefGoogle Scholar
  64. 64.
    Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 385:442–446PubMedCrossRefGoogle Scholar
  65. 65.
    Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620PubMedCrossRefGoogle Scholar
  66. 66.
    Sandoz G, Lopez-Gonzalez I, Grunwald D, Bichet D, Altafaj X, Weiss N, Ronjat M, Dupuis A, De WM (2004) Cavbeta-subunit displacement is a key step to induce the reluctant state of P/Q calcium channels by direct G protein regulation. Proc Natl Acad Sci USA 101:6267–6272PubMedCrossRefGoogle Scholar
  67. 67.
    Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ (2003) T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213PubMedCrossRefGoogle Scholar
  68. 68.
    Doering CJ, Kisilevsky AE, Feng ZP, Arnot MI, Peloquin J, Hamid J, Barr W, Nirdosh A, Simms B, Winkfein RJ, Zamponi GW (2004) A single Gbeta subunit locus controls cross-talk between protein kinase C and G protein regulation of N-type calcium channels 5. J Biol Chem 279:29709–29717PubMedCrossRefGoogle Scholar
  69. 69.
    Brenowitz SD, Regehr WG (2003) “Resistant” channels reluctantly reveal their roles. Neuron 39:391–394PubMedCrossRefGoogle Scholar
  70. 70.
    Kim Y, Park MK, Uhm DY, Chung S (2007) Modulation of T-type Ca2+ channels by corticotropin-releasing factor through protein kinase C pathway in MN9D dopaminergic cells. Biochem Biophys Res Commun 358:796–801PubMedCrossRefGoogle Scholar
  71. 71.
    Yao J, Davies LA, Howard JD, Adney SK, Welsby PJ, Howell N, Carey RM, Colbran RJ, Barrett PQ (2006) Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. J Clin Invest 116:2403–2412PubMedGoogle Scholar
  72. 72.
    Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH (2006) Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. J Physiol 577:513–523PubMedCrossRefGoogle Scholar
  73. 73.
    Iftinca M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi GW (2006) Temperature dependence of T-type calcium channel gating. Neuroscience 142:1031–1042PubMedCrossRefGoogle Scholar
  74. 74.
    Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10:712–718PubMedCrossRefGoogle Scholar
  75. 75.
    Nelson MT, Joksovic PM, Su P, Kang HW, Van DA, Baumgart JP, David LS, Snutch TP, Barrett PQ, Lee JH, Zorumski CF, Perez-Reyes E, Todorovic SM (2007) Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 27:12577–12583PubMedCrossRefGoogle Scholar
  76. 76.
    Tao J, Hildebrand ME, Liao P, Liang MC, Tan G, Li S, Snutch TP, Soong TW (2008) Activation of corticotropin-releasing factor receptor 1 selectively inhibits Cav3.2 T-type calcium channels. Mol Pharmacol 73:1596–1609PubMedCrossRefGoogle Scholar
  77. 77.
    Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996PubMedCrossRefGoogle Scholar
  78. 78.
    Gibney GT, Zhang JH, Douglas RM, Haddad GG, Xia Y (2002) Na+/Ca2+ exchanger expression in the developing rat cortex. Neuroscience 112:65–73PubMedCrossRefGoogle Scholar
  79. 79.
    Albowitz B, Konig P, Kuhnt U (1997) Spatiotemporal distribution of intracellular calcium transients during epileptiform activity in guinea pig hippocampal slices. J Neurophysiol 77:491–501PubMedGoogle Scholar
  80. 80.
    DeLorenzo RJ, Pal S, Sombati S (1998) Prolonged activation of the N-methyl-D-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc Natl Acad Sci USA 95:14482–14487PubMedCrossRefGoogle Scholar
  81. 81.
    Sun DA, Sombati S, Blair RE, DeLorenzo RJ (2002) Calcium-dependent epileptogenesis in an in vitro model of stroke-induced “epilepsy”. Epilepsia 43:1296–1305PubMedCrossRefGoogle Scholar
  82. 82.
    Heinemann U, Hamon B (1986) Calcium and epileptogenesis. Exp Brain Res 65:1–10PubMedCrossRefGoogle Scholar
  83. 83.
    Pisani A, Bonsi P, Martella G, De Persis C, Costa C, Pisani F, Bernardi G, Calabresi P (2004) Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 45:719–728PubMedCrossRefGoogle Scholar
  84. 84.
    Beck H, Steffens R, Elger CE, Heinemann U (1998) Voltage-dependent Ca2+ currents in epilepsy. Epilepsy Res 32:321–332PubMedCrossRefGoogle Scholar
  85. 85.
    Straub H, Speckmann EJ, Bingmann D, Walden J (1990) Paroxysmal depolarization shifts induced by bicuculline in CA3 neurons of hippocampal slices: suppression by the organic calcium antagonist verapamil. Neurosci Lett 111:99–101PubMedCrossRefGoogle Scholar
  86. 86.
    Berg M, Bruhn T, Frandsen A, Schousboe A, Diemer NH (1995) Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J Neurosci Res 40:641–646PubMedCrossRefGoogle Scholar
  87. 87.
    Sullivan PG (2005) Interventions with neuroprotective agents: novel targets and opportunities. Epilepsy Behav 7(Suppl 3):S12–S17PubMedCrossRefGoogle Scholar
  88. 88.
    Benarroch EE (2010) Neuronal voltage-gated calcium channels: brief overview of their function and clinical implications in neurology. Neurology 74:1310–1315PubMedCrossRefGoogle Scholar
  89. 89.
    Andrew RD, Dudek FE (1983) Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism. Science 221:1050–1052PubMedCrossRefGoogle Scholar
  90. 90.
    Andrew RD (1987) Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. J Physiol 384:451–465PubMedGoogle Scholar
  91. 91.
    Andrew RD, Dudek FE (1984) Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J Neurophysiol 51:552–566PubMedGoogle Scholar
  92. 92.
    Hlubek MD, Cobbett P (2000) Differential effects of K+ channel blockers on frequency-dependent action potential broadening in supraoptic neurons. Brain Res Bull 53:203–209PubMedCrossRefGoogle Scholar
  93. 93.
    Roper P, Callaway J, Shevchenko T, Teruyama R, Armstrong W (2003) AHP’s, HAP’s and DAP’s: how potassium currents regulate the excitability of rat supraoptic neurones. J Comput Neurosci 15:367–389PubMedCrossRefGoogle Scholar
  94. 94.
    Abel HJ, Lee JC, Callaway JC, Foehring RC (2004) Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons. J Neurophysiol 91:324–335PubMedCrossRefGoogle Scholar
  95. 95.
    Pierson PM, Liu X, Raggenbass M (2005) Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat. Brain Res 1036:50–59PubMedCrossRefGoogle Scholar
  96. 96.
    Simon M, Perrier JF, Hounsgaard J (2003) Subcellular distribution of L-type Ca2+ channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle. Eur J Neurosci 18:258–266PubMedCrossRefGoogle Scholar
  97. 97.
    Li Y, Bennett DJ (2003) Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol 90:857–869PubMedCrossRefGoogle Scholar
  98. 98.
    Hounsgaard J, Kiehn O (1989) Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J Physiol 414:265–282PubMedGoogle Scholar
  99. 99.
    Mills JD, Pitman RM (1997) Electrical properties of a cockroach motor neuron soma depend on different characteristics of individual Ca components. J Neurophysiol 78:2455–2466PubMedGoogle Scholar
  100. 100.
    Morisset V, Nagy F (1999) Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J Neurosci 19:7309–7316PubMedGoogle Scholar
  101. 101.
    Voisin DL, Nagy F (2001) Sustained L-type calcium currents in dissociated deep dorsal horn neurons of the rat: characteristics and modulation. Neuroscience 102:461–472PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang B, Harris-Warrick RM (1995) Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. I. Calcium current and its modulation by serotonin. J Neurophysiol 74:1929–1937PubMedGoogle Scholar
  103. 103.
    Fanelli RJ, McCarthy RT, Chisholm J (1994) Neuropharmacology of nimodipine: from single channels to behavior. Ann NY Acad Sci 747:336–350PubMedCrossRefGoogle Scholar
  104. 104.
    McCarthy RT, TanPiengco PE (1992) Multiple types of high-threshold calcium channels in rabbit sensory neurons: high-affinity block of neuronal L-type by nimodipine. J Neurosci 12:2225–2234PubMedGoogle Scholar
  105. 105.
    Vergara R, Rick C, Hernandez-Lopez S, Laville JA, Guzman JN, Galarraga E, Surmeier DJ, Bargas J (2003) Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 553:169–182PubMedCrossRefGoogle Scholar
  106. 106.
    Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342PubMedGoogle Scholar
  107. 107.
    Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995PubMedGoogle Scholar
  108. 108.
    Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) α1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106PubMedCrossRefGoogle Scholar
  109. 109.
    Xu WF, Lipscombe D (2001) Neuronal Cav1.3α1  L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951PubMedGoogle Scholar
  110. 110.
    Michna M, Knirsch M, Hoda JC, Muenkner S, Langer P, Platzer J, Striessnig J, Engel J (2003) Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol 553:747–758PubMedCrossRefGoogle Scholar
  111. 111.
    Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260:1133–1136PubMedCrossRefGoogle Scholar
  112. 112.
    Stephens GJ, Page KM, Burley JR, Berrow NS, Dolphin AC (1997) Functional expression of rat brain cloned alpha1E calcium channels in COS-7 cells. Pflugers Arch 433:523–532PubMedCrossRefGoogle Scholar
  113. 113.
    Wakamori M, Niidome T, Rufutama D, Furuichi T, Mikoshiba K, Fujita Y, Tanaka I, Katayama K, Yatani A, Schwartz A, Mori Y (1994) Distinctive functional properties of the neuronal BII (class E) calcium channel. Receptors Channels 2:303–314PubMedGoogle Scholar
  114. 114.
    Cloues RK, Sather WA (2003) Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J Neurosci 23:1593–1604PubMedGoogle Scholar
  115. 115.
    Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA (2005) Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia 46:481–489PubMedCrossRefGoogle Scholar
  116. 116.
    Metz AE, Jarsky T, Martina M, Spruston N (2005) R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J Neurosci 25:5763–5773PubMedCrossRefGoogle Scholar
  117. 117.
    Fraser DD, MacVicar BA (1996) Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 16:4113–4128PubMedGoogle Scholar
  118. 118.
    Fraser DD, Doll D, MacVicar BA (2001) Serine/threonine protein phosphatases and synaptic inhibition regulate the expression of cholinergic-dependent plateau potentials. J Neurophysiol 85:1197–1205PubMedGoogle Scholar
  119. 119.
    Lothman EW, Bertram EH III, Stringer JL (1991) Functional anatomy of hippocampal seizures. Prog Neurobiol 37:1–82PubMedCrossRefGoogle Scholar
  120. 120.
    Wasterlain CG, Fujikawa DG, Penix L, Sankar R (1993) Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34(Suppl 1):S37–S53PubMedCrossRefGoogle Scholar
  121. 121.
    Kuzmiski JB, MacVicar BA (2001) Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 21:8707–8714PubMedGoogle Scholar
  122. 122.
    Yasuda R, Sabatini BL, Svoboda K (2003) Plasticity of calcium channels in dendritic spines. Nat Neurosci 6:948–955PubMedCrossRefGoogle Scholar
  123. 123.
    Qian J, Noebels JL (2001) Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J Neurosci 21:3721–3728PubMedGoogle Scholar
  124. 124.
    Qian J, Noebels JL (2003) Topiramate alters excitatory synaptic transmission in mouse hippocampus. Epilepsy Res 55:225–233PubMedCrossRefGoogle Scholar
  125. 125.
    Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304PubMedCrossRefGoogle Scholar
  126. 126.
    Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–284PubMedCrossRefGoogle Scholar
  127. 127.
    Gahwiler BH, Brown DA (1987) Muscarine affects calcium-currents in rat hippocampal pyramidal cells in vitro. Neurosci Lett 76:301–306PubMedCrossRefGoogle Scholar
  128. 128.
    Toselli M, Lang J, Costa T, Lux HD (1989) Direct modulation of voltage-dependent calcium channels by muscarinic activation of a pertussis toxin-sensitive G-protein in hippocampal neurons. Pflugers Arch 415:255–261PubMedCrossRefGoogle Scholar
  129. 129.
    Palmieri C, Kawasaki H, Avoli M (2000) Topiramate depresses carbachol-induced plateau potentials in subicular bursting cells. Neuroreport 11:75–78PubMedCrossRefGoogle Scholar
  130. 130.
    LaRoche SM, Helmers SL (2004) The new antiepileptic drugs: scientific review. JAMA 291:605–614PubMedCrossRefGoogle Scholar
  131. 131.
    Waugh J, Goa KL (2003) Topiramate: as monotherapy in newly diagnosed epilepsy. CNS Drugs 17:985–992PubMedCrossRefGoogle Scholar
  132. 132.
    Newcomb R, Szoke B, Palma A, Wang G, Chen XH, Hopkins W, Cong R, Miller J, Urge L, Tarczy-Hornoch K, Loo JA, Dooley DJ, Nadasdi L, Tsien RW, Lemos J, Miljanich G (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37:15353–15362PubMedCrossRefGoogle Scholar
  133. 133.
    Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H (2002) The α1E calcium channel subunit underlies R-type calcium current in hippocampal and cortical pyramidal neurons. J Physiol 542:699–710PubMedCrossRefGoogle Scholar
  134. 134.
    Melliti K, Meza U, Adams B (2000) Muscarinic stimulation of α1E Ca channels is selectively blocked by the effector antagonist function of RGS2 and phsopholipase C-β1. J Neurosci 20:7167–7173PubMedGoogle Scholar
  135. 135.
    Bannister RA, Melliti K, Adams BA (2004) Differential modulation of Cav2.3 Ca2+ channels by G{alpha}q/11-coupled muscarinic receptors. Mol Pharmacol 65:381–388PubMedCrossRefGoogle Scholar
  136. 136.
    Curia G, Aracri P, Sancini G, Mantegazza M, Avanzini G, Franceschetti S (2004) Protein-kinase C-dependent phosphorylation inhibits the effect of the antiepileptic drug topiramate on the persistent fraction of sodium currents. Neuroscience 127:63–68PubMedCrossRefGoogle Scholar
  137. 137.
    Tai C, Kuzmiski JB, MacVicar BA (2006) Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J Neurosci 26:6249–6258PubMedCrossRefGoogle Scholar
  138. 138.
    Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15:4077–4092PubMedGoogle Scholar
  139. 139.
    Meza U, Bannister R, Melliti K, Adams B (1999) Biphasic, opposing modulation of cloned neuronal α1E Ca channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J Neurosci 19:6806–6817PubMedGoogle Scholar
  140. 140.
    Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM (1997) Disruption of the m1 receptor gene ablates muscarinic receptor- dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94:13311–13316PubMedCrossRefGoogle Scholar
  141. 141.
    Vreugdenhil M, Wadman WJ (1994) Kindling-induced long-lasting enhancement of calcium current in hippocampal CA1 area of the rat: relation to calcium-dependent inactivation. Neuroscience 59:105–114PubMedCrossRefGoogle Scholar
  142. 142.
    Hendriksen H, Kamphuis W, da Silva FHL (1997) Changes in voltage-dependent calcium channel alpha1-subunit mRNA levels in the kindling model of epileptogenesis. Mol Brain Res 50:257–266PubMedCrossRefGoogle Scholar
  143. 143.
    Kang TC, Kim DS, Yoo KY, Hwang IK, Kwak SE, Kim JE, Jung JY, Won MH, Suh JG, Oh YS (2004) Elevated voltage-gated Ca2+ channel immunoreactivities in the hippocampus of seizure-prone gerbil. Brain Res 1029:168–178PubMedCrossRefGoogle Scholar
  144. 144.
    Manning JP, Richards DA, Bowery NG (2003) Pharmacology of absence epilepsy. Trends Pharmacol Sci 24:542–549PubMedCrossRefGoogle Scholar
  145. 145.
    Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86:941–966PubMedCrossRefGoogle Scholar
  146. 146.
    Nagaeva DV, Akhmadeev AV (2006) Structural organization, neurochemical characteristics, and connections of the reticular nucleus of the thalamus. Neurosci Behav Physiol 36:987–995PubMedCrossRefGoogle Scholar
  147. 147.
    Mulle C, Madariaga A, Deschenes M (1986) Morphology and electrophysiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker. J Neurosci 6:2134–2145PubMedGoogle Scholar
  148. 148.
    Fuentealba P, Steriade M (2005) The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol 75:125–141PubMedCrossRefGoogle Scholar
  149. 149.
    Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169–185PubMedGoogle Scholar
  150. 150.
    Lakaye B, Thomas E, Minet A, Grisar T (2002) The genetic absence epilepsy rat from Strasbourg (GAERS), a rat model of absence epilepsy: computer modeling and differential gene expression. Epilepsia 43(Suppl 5):123–129PubMedCrossRefGoogle Scholar
  151. 151.
    Contreras D (2006) The role of T-channels in the generation of thalamocortical rhythms. CNS Neurol Disord Drug Targets 5:571–585PubMedCrossRefGoogle Scholar
  152. 152.
    Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95:3297–3308PubMedCrossRefGoogle Scholar
  153. 153.
    Shin HS (2006) T-type Ca2+ channels and absence epilepsy. Cell Calcium 40:191–196PubMedCrossRefGoogle Scholar
  154. 154.
    Von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364CrossRefGoogle Scholar
  155. 155.
    Kim U, Bal T, McCormick DA (1995) Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol 74:1301–1323PubMedGoogle Scholar
  156. 156.
    Weiergraber M, Kamp MA, Radhakrishnan K, Hescheler J, Schneider T (2006) The Cav2.3 voltage-gated calcium channel in epileptogenesis – shedding new light on an enigmatic channel. Neurosci Biobehav Rev 30:1122–1144PubMedCrossRefGoogle Scholar
  157. 157.
    Shin HS, Lee J, Song I (2006) Genetic studies on the role of T-type Ca2+ channels in sleep and absence epilepsy. CNS Neurol Disord Drug Targets 5:629–638PubMedCrossRefGoogle Scholar
  158. 158.
    Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911PubMedGoogle Scholar
  159. 159.
    Talley EM, Solórzano G, Depaulis A, Perez-Reyes E, Bayliss DA (2000) Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Mol Brain Res 75:159–165PubMedCrossRefGoogle Scholar
  160. 160.
    Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron 31:35–45PubMedCrossRefGoogle Scholar
  161. 161.
    Lee J, Kim D, Shin HS (2004) Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci USA 101:18195–18199PubMedCrossRefGoogle Scholar
  162. 162.
    Song I, Kim D, Choi S, Sun M, Kim Y, Shin HS (2004) Role of the alpha1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 24:5249–5257PubMedCrossRefGoogle Scholar
  163. 163.
    Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL (2009) Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29:1615–1625PubMedCrossRefGoogle Scholar
  164. 164.
    Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, Foote SJ, Snutch TP, O’Brien TJ (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29:371–380PubMedCrossRefGoogle Scholar
  165. 165.
    Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15:3110–3117PubMedGoogle Scholar
  166. 166.
    Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T (2008) Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399PubMedCrossRefGoogle Scholar
  167. 167.
    van de Bovenkamp-Janssen M, Scheenen WJ, Kuijpers-Kwant FJ, Kozicz T, Veening JG, van Luijtelaar EL, McEnery MW, Roubos EW (2004) Differential expression of high voltage-activated Ca2+ channel types in the rostral reticular thalamic nucleus of the absence epileptic WAG/Rij rat. J Neurobiol 58:467–478PubMedCrossRefGoogle Scholar
  168. 168.
    Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279:9681–9684PubMedCrossRefGoogle Scholar
  169. 169.
    Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW (2005) Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 57:745–749PubMedCrossRefGoogle Scholar
  170. 170.
    van Luijtelaar G, Wiaderna D, Elants C, Scheenen W (2000) Opposite effects of T- and L-type Ca2+ channels blockers in generalized absence epilepsy. Eur J Pharmacol 406:381–389PubMedCrossRefGoogle Scholar
  171. 171.
    Weiergraber M, Henry M, Ho MS, Struck H, Hescheler J, Schneider T (2008) Altered thalamocortical rhythmicity in Cav2.3-deficient mice. Mol Cell Neurosci 39:605–618PubMedCrossRefGoogle Scholar
  172. 172.
    De Borman B, Lakaye B, Minet A, Zorzi W, Vergnes M, Marescaux C, Grisar T (1999) Expression of mRNA encoding α1E and α1G subunit in the brain of a rat model of absence epilepsy. Neuroreport 10:569–574PubMedCrossRefGoogle Scholar
  173. 173.
    Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-D-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261:89–92PubMedCrossRefGoogle Scholar
  174. 174.
    Deransart C, Landwehrmeyer GB, Feuerstein TJ, Lucking CH (2001) Up-regulation of D3 dopaminergic receptor mRNA in the core of the nucleus accumbens accompanies the development of seizures in a genetic model of absence-epilepsy in the rat. Brain Res Mol Brain Res 94:166–177PubMedCrossRefGoogle Scholar
  175. 175.
    Hainsworth AH, McNaughton NC, Pereverzev A, Schneider T, Randall AD (2003) Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. Eur J Pharmacol 467:77–80PubMedCrossRefGoogle Scholar
  176. 176.
    van Luijtelaar EL, Drinkenburg WH, van Rijn CM, Coenen AM (2002) Rat models of genetic absence epilepsy: what do EEG spike-wave discharges tell us about drug effects? Methods Find Exp Clin Pharmacol 24(Suppl D):65–70PubMedGoogle Scholar
  177. 177.
    Gibbs JW III, Zhang YF, Ahmed HS, Coulter DA (2002) Anticonvulsant actions of lamotrigine on spontaneous thalamocortical rhythms. Epilepsia 43:342–349PubMedCrossRefGoogle Scholar
  178. 178.
    Joksovic PM, Weiergraber M, Lee W, Struck H, Schneider T, Todorovic SM (2009) Isoflurane-sensitive presynaptic R-type calcium channels contribute to inhibitory synaptic transmission in the rat thalamus. J Neurosci 29:1434–1445PubMedCrossRefGoogle Scholar
  179. 179.
    Long P, Mercer A, Begum R, Stephens GJ, Sihra TS, Jovanovic JN (2009) Nerve terminal GABAA receptors activate Ca2+/calmodulin-dependent signalling to inhibit voltage-gated Ca2+ influx and glutamate release. J Biol Chem 284(13):8726–8737PubMedCrossRefGoogle Scholar
  180. 180.
    Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, Nishida M, Numata T, Medina MT, Takeuchi T, Morita R, Bai D, Ganesh S, Sugimoto Y, Inazawa J, Bailey JN, Ochoa A, Jara-Prado A, Rasmussen A, Ramos-Peek J, Cordova S, Rubio-Donnadieu F, Inoue Y, Osawa M, Kaneko S, Oguni H, Mori Y, Yamakawa K (2004) Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36:842–849PubMedCrossRefGoogle Scholar
  181. 181.
    Zaman T, Lee K, Park C, Paydar A, Choi JH, Cheong E, Lee CJ, Shin HS (2011) Cav2.3 channels are critical for oscillatory burst discharges in the reticular thalamus and absence epilepsy. Neuron 70:95–108PubMedCrossRefGoogle Scholar
  182. 182.
    Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The Cav3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108:13823–13828PubMedCrossRefGoogle Scholar
  183. 183.
    Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224PubMedCrossRefGoogle Scholar
  184. 184.
    Herrmann S, Stieber J, Ludwig A (2007) Pathophysiology of HCN channels. Pflugers Arch 454:517–522PubMedCrossRefGoogle Scholar
  185. 185.
    Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC (2005) Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 25:9871–9882PubMedCrossRefGoogle Scholar
  186. 186.
    Graef JD, Godwin DW (2010) Intrinsic plasticity in acquired epilepsy: too much of a good thing? Neuroscientist 16:487–495PubMedCrossRefGoogle Scholar
  187. 187.
    Anderson D, Rehak R, Hameed S, Mehaffey WH, Zamponi GW, Turner RW (2010) Regulation of the Kv4.2 complex by Cav3.1 calcium channels. Channels (Austin) 4:163–167CrossRefGoogle Scholar
  188. 188.
    Zamponi GW, Lory P, Perez-Reyes E (2010) Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 460:395–403PubMedCrossRefGoogle Scholar
  189. 189.
    N’Gouemo P, Faingold CL, Morad M (2009) Calcium channel dysfunction in inferior colliculus neurons of the genetically epilepsy-prone rat. Neuropharmacology 56:665–675PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Magdalena Siwek
    • 1
  • Christina Henseler
    • 1
  • Karl Broich
    • 1
  • Anna Papazoglou
    • 1
  • Marco Weiergräber
    • 1
  1. 1.Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)BonnGermany

Personalised recommendations