Calcium Signaling pp 1175-1191 | Cite as

Proarrhythmic Atrial Calcium Cycling in the Diseased Heart

  • Niels Voigt
  • Stanley Nattel
  • Dobromir Dobrev
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 740)


During the last decades Ca2+ has been found to play a crucial role in cardiac arrhythmias associated with heart failure and a number of congenital arrhythmia syndromes. Recent studies demonstrated that altered atrial Ca2+ cycling may promote the initiation and maintenance of atrial fibrillation, the most common clinical arrhythmia that contributes significantly to population morbidity and mortality. This article describes physiological Ca2+ cycling mechanisms in atrial cardiomyocytes and relates them to fundamental cellular proarrhythmic mechanisms involving Ca2+ signaling abnormalities in the atrium during atrial fibrillation.


Calcium Atrial arrhythmias Remodeling Ion channels Reentry Triggered activity 



The author’s research is supported by the Deutsche Forschungsgemeinschaft (Do769/1-1-3, to DD), the German Federal Ministry of Education and Research (BMBF; Atrial Fibrillation Competence Network [01Gi0204] and German Center of Cardiovascular Research, both to DD), the European Union through the European Network for Translational Research in Atrial Fibrillation, (EUTRAF, FP7-HEALTH-2010, large-scale integrating project, Proposal No. 261057 to DD), the Canadian Institutes of Health Research (MOP44365, to SN) and the European-North American Atrial Fibrillation Research Alliance (ENAFRA) grant of Fondation Leducq (07CVD03, to DD and SN).


  1. 1.
    Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS (2006) Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114:119–125PubMedCrossRefGoogle Scholar
  2. 2.
    Dobrev D, Nattel S (2010) New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 375:1212–1223PubMedCrossRefGoogle Scholar
  3. 3.
    Dobrev D, Teos LY, Lederer WJ (2009) Unique atrial myocyte Ca2+ signaling. J Mol Cell Cardiol 46:448–451PubMedCrossRefGoogle Scholar
  4. 4.
    Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1:62–73PubMedCrossRefGoogle Scholar
  5. 5.
    Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121:2955–2968PubMedCrossRefGoogle Scholar
  6. 6.
    Hove-Madsen L, Llach A, Bayes-Genis A, Roura S, Rodriguez Font E, Aris A, Cinca J (2004) Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110:1358–1363PubMedCrossRefGoogle Scholar
  7. 7.
    Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schondube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144PubMedCrossRefGoogle Scholar
  8. 8.
    Lenaerts I, Bito V, Heinzel FR, Driesen RB, Holemans P, D’Hooge J, Heidbuchel H, Sipido KR, Willems R (2009) Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res 105:876–885PubMedCrossRefGoogle Scholar
  9. 9.
    Wakili R, Yeh YH, Yan Qi X, Greiser M, Chartier D, Nishida K, Maguy A, Villeneuve LR, Boknik P, Voigt N, Krysiak J, Kaab S, Ravens U, Linke WA, Stienen GJ, Shi Y, Tardif JC, Schotten U, Dobrev D, Nattel S (2010) Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Circ Arrhythm Electrophysiol 3:530–541PubMedCrossRefGoogle Scholar
  10. 10.
    Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kaab S, Ravens U, Coutu P, Dobrev D, Nattel S (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1:93–102PubMedCrossRefGoogle Scholar
  11. 11.
    Voigt N, Trafford AW, Qiongling W, Wehrens XH, Ravens U, Dobrev D (2010) Abstract 16909: Sarcoplasmic reticulum calcium leak and enhanced NCX increase occurrence of delayed afterdepolarisations in atrial myocytes from patients with chronic atrial fibrillation. Circulation 122:A16909Google Scholar
  12. 12.
    Voigt N, Trafford AW, Ravens U, Dobrev D (2009) Abstract 2630: Cellular and molecular determinants of altered atrial Ca2+ signaling in patients with chronic atrial fibrillation. Circulation 120:S667–S668Google Scholar
  13. 13.
    Dobrev D, Graf E, Wettwer E, Himmel HM, Hala O, Doerfel C, Christ T, Schuler S, Ravens U (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current IK, ACh in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced IK, ACh and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557PubMedCrossRefGoogle Scholar
  14. 14.
    The Task Force of the Working Group on Arrhythmias of the European Society of Cardiology (1991) The ‘Sicilian Gambit’. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Eur Heart J 12:1112–1131Google Scholar
  15. 15.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205PubMedCrossRefGoogle Scholar
  16. 16.
    Diaz ME, Graham HK, O’Neill SC, Trafford AW, Eisner DA (2005) The control of sarcoplasmic reticulum Ca content in cardiac muscle. Cell Calcium 38:391–396PubMedCrossRefGoogle Scholar
  17. 17.
    Trafford AW, Diaz ME, O’Neill SC, Eisner DA (2002) Integrative analysis of calcium signalling in cardiac muscle. Front Biosci 7:d843–d852PubMedCrossRefGoogle Scholar
  18. 18.
    Trafford AW, Diaz ME, Eisner DA (2001) Coordinated control of cell Ca2+ loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca2+ current. Circ Res 88:195–201PubMedGoogle Scholar
  19. 19.
    Hatem SN, Benardeau A, Rucker-Martin C, Marty I, de Chamisso P, Villaz M, Mercadier JJ (1997) Different compartments of sarcoplasmic reticulum participate in the excitation-contraction coupling process in human atrial myocytes. Circ Res 80:345–353PubMedGoogle Scholar
  20. 20.
    Bootman MD, Higazi DR, Coombes S, Roderick HL (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119:3915–3925PubMedCrossRefGoogle Scholar
  21. 21.
    Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H, Barry WH (2005) Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol 55:81–91PubMedCrossRefGoogle Scholar
  22. 22.
    Zima AV, Blatter LA (2004) Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 555:607–615PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia KD, Shah T, Garcia J (2004) Immunolocalization of type 2 inositol 1,4,5-trisphosphate receptors in cardiac myocytes from newborn mice. Am J Physiol Cell Physiol 287:C1048–C1057PubMedCrossRefGoogle Scholar
  24. 24.
    Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942PubMedCrossRefGoogle Scholar
  25. 25.
    Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, Nattel S (2010) Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem 285:22338–22349PubMedCrossRefGoogle Scholar
  26. 26.
    Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, Li WH, Lipp P (2002) The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol 541:395–409PubMedCrossRefGoogle Scholar
  27. 27.
    Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70PubMedCrossRefGoogle Scholar
  28. 28.
    MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577PubMedCrossRefGoogle Scholar
  29. 29.
    El-Armouche A, Wittkopper K, Degenhardt F, Weinberger F, Didie M, Melnychenko I, Grimm M, Peeck M, Zimmermann WH, Unsold B, Hasenfuss G, Dobrev D, Eschenhagen T (2008) Phosphatase inhibitor-1-deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy. Cardiovasc Res 80:396–406PubMedCrossRefGoogle Scholar
  30. 30.
    Wittkopper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsold B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–626PubMedGoogle Scholar
  31. 31.
    Wittkopper K, Dobrev D, Eschenhagen T, El-Armouche A (2011) Phosphatase-1 inhibitor-1 in physiological and pathological b-adrenoceptor signalling. Cardiovasc Res 91:392–401PubMedCrossRefGoogle Scholar
  32. 32.
    Dobrev D, Nattel S (2008) Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol 52:293–299PubMedCrossRefGoogle Scholar
  33. 33.
    Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226PubMedCrossRefGoogle Scholar
  34. 34.
    Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325PubMedCrossRefGoogle Scholar
  35. 35.
    Burashnikov A, Antzelevitch C (2006) Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation. Pacing Clin Electrophysiol 29:290–295PubMedCrossRefGoogle Scholar
  36. 36.
    Johnson JN, Tester DJ, Perry J, Salisbury BA, Reed CR, Ackerman MJ (2008) Prevalence of early-onset atrial fibrillation in congenital long QT syndrome. Heart Rhythm 5:704–709PubMedCrossRefGoogle Scholar
  37. 37.
    Zellerhoff S, Pistulli R, Monnig G, Hinterseer M, Beckmann BM, Kobe J, Steinbeck G, Kaab S, Haverkamp W, Fabritz L, Gradaus R, Breithardt G, Schulze-Bahr E, Bocker D, Kirchhof P (2009) Atrial Arrhythmias in long-QT syndrome under daily life conditions: a nested case control study. J Cardiovasc Electrophysiol 20:401–407PubMedCrossRefGoogle Scholar
  38. 38.
    Dobrev D, Voigt N, Wehrens XH (2011) The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res 89:734–743PubMedCrossRefGoogle Scholar
  39. 39.
    Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Muller FU, Schmitz W, Schotten U, Anderson ME, Valderrabano M, Dobrev D, Wehrens XH (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951PubMedGoogle Scholar
  40. 40.
    Sood S, Chelu MG, van Oort RJ, Skapura D, Santonastasi M, Dobrev D, Wehrens XH (2008) Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation. Heart Rhythm 5:1047–1054PubMedCrossRefGoogle Scholar
  41. 41.
    Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111:2025–2032PubMedCrossRefGoogle Scholar
  42. 42.
    Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89:997–1004PubMedGoogle Scholar
  43. 43.
    Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85:810–819PubMedGoogle Scholar
  44. 44.
    Dobrev D, Wehrens XH (2010) Calmodulin kinase II, sarcoplasmic reticulum Ca2+ leak, and atrial fibrillation. Trends Cardiovasc Med 20:30–34PubMedCrossRefGoogle Scholar
  45. 45.
    El-Armouche A, Boknik P, Eschenhagen T, Carrier L, Knaut M, Ravens U, Dobrev D (2006) Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation 114:670–680PubMedCrossRefGoogle Scholar
  46. 46.
    Greiser M, Halaszovich CR, Frechen D, Boknik P, Ravens U, Dobrev D, Luckhoff A, Schotten U (2007) Pharmacological evidence for altered src kinase regulation of ICa, L in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 375:383–392PubMedCrossRefGoogle Scholar
  47. 47.
    Carr AN, Schmidt AG, Suzuki Y, del Monte F, Sato Y, Lanner C, Breeden K, Jing SL, Allen PB, Greengard P, Yatani A, Hoit BD, Grupp IL, Hajjar RJ, DePaoli-Roach AA, Kranias EG (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22:4124–4135PubMedCrossRefGoogle Scholar
  48. 48.
    Liang X, Xie H, Zhu PH, Hu J, Zhao Q, Wang CS, Yang C (2009) Enhanced activity of inositol-1,4,5-trisphosphate receptors in atrial myocytes of atrial fibrillation patients. Cardiology 114:180–191PubMedCrossRefGoogle Scholar
  49. 49.
    Guo JH, Liu YS, Zhang HC, Li XB, Xu Y, Zhang YY, Yuan L (2004) Expression and function changes of ryanodine receptors and inositol 1,4,5-triphosphate receptors of atrial myocytes during atrial fibrillation. Zhonghua Yi Xue Za Zhi 84:1196–1199PubMedGoogle Scholar
  50. 50.
    Zhao ZH, Zhang HC, Xu Y, Zhang P, Li XB, Liu YS, Guo JH (2007) Inositol-1,4,5-trisphosphate and ryanodine-dependent Ca2+ signaling in a chronic dog model of atrial fibrillation. Cardiology 107:269–276PubMedCrossRefGoogle Scholar
  51. 51.
    Yamda J, Ohkusa T, Nao T, Ueyama T, Yano M, Kobayashi S, Hamano K, Esato K, Matsuzaki M (2001) Up-regulation of inositol 1,4,5 trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J Am Coll Cardiol 37:1111–1119PubMedCrossRefGoogle Scholar
  52. 52.
    Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528–1539PubMedCrossRefGoogle Scholar
  53. 53.
    Zima AV, Bovo E, Bers DM, Blatter LA (2010) Ca2+  spark-dependent and -independent ­sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol 588:4743–4757PubMedCrossRefGoogle Scholar
  54. 54.
    Lipp P, Niggli E (1996) Submicroscopic calcium signals as fundamental events of excitation–contraction coupling in guinea-pig cardiac myocytes. J Physiol 492(Pt 1):31–38PubMedGoogle Scholar
  55. 55.
    Sobie EA, Guatimosim S, Gomez-Viquez L, Song LS, Hartmann M, Saleet Jafri H, Lederer WJ (2006) The Ca2+ leak paradox and rogue ryanodine receptors: SR Ca2+ efflux theory and practice. Prog Biophys Mol Biol 90:172–185PubMedCrossRefGoogle Scholar
  56. 56.
    Shannon TR, Ginsburg KS, Bers DM (2002) Quantitative assessment of the SR Ca2+ leak-load relationship. Circ Res 91:594–600PubMedCrossRefGoogle Scholar
  57. 57.
    Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780PubMedGoogle Scholar
  58. 58.
    Schotten U, Greiser M, Benke D, Buerkel K, Ehrenteidt B, Stellbrink C, Vazquez-Jimenez JF, Schoendube F, Hanrath P, Allessie M (2002) Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. Cardiovasc Res 53:192–201PubMedCrossRefGoogle Scholar
  59. 59.
    Venetucci LA, Trafford AW, Eisner DA (2007) Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: threshold sarcoplasmic reticulum calcium content is required. Circ Res 100:105–111PubMedCrossRefGoogle Scholar
  60. 60.
    Bhupathy P, Babu GJ, Ito M, Periasamy M (2009) Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J Mol Cell Cardiol 47:723–729PubMedCrossRefGoogle Scholar
  61. 61.
    Uemura N, Ohkusa T, Hamano K, Nakagome M, Hori H, Shimizu M, Matsuzaki M, Mochizuki S, Minamisawa S, Ishikawa Y (2004) Down-regulation of sarcolipin mRNA expression in chronic atrial fibrillation. Eur J Clin Invest 34:723–730PubMedCrossRefGoogle Scholar
  62. 62.
    Greiser M, Neuberger HR, Harks E, El-Armouche A, Boknik P, de Haan S, Verheyen F, Verheule S, Schmitz W, Ravens U, Nattel S, Allessie MA, Dobrev D, Schotten U (2009) Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation. J Mol Cell Cardiol 46:385–394PubMedCrossRefGoogle Scholar
  63. 63.
    Pandit SV, Berenfeld O, Anumonwo JM, Zaritski RM, Kneller J, Nattel S, Jalife J (2005) Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J 88:3806–3821PubMedCrossRefGoogle Scholar
  64. 64.
    Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428–436PubMedGoogle Scholar
  65. 65.
    Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, Strasser RH, Ravens U, Dobrev D (2007) Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK, ACh channels in patients with chronic atrial fibrillation. Cardiovasc Res 74:426–437PubMedCrossRefGoogle Scholar
  66. 66.
    Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens U (2005) The G protein-gated potassium current IK, ACh is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706PubMedCrossRefGoogle Scholar
  67. 67.
    Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S (2006) Kir3-based inward rectifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation 113:1730–1737PubMedCrossRefGoogle Scholar
  68. 68.
    Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657PubMedCrossRefGoogle Scholar
  69. 69.
    Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hebert TE, Nattel S (2004) Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. J Physiol 557:583–597PubMedCrossRefGoogle Scholar
  70. 70.
    Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525PubMedGoogle Scholar
  71. 71.
    Voigt N, Maguy A, Yeh YH, Qi X, Ravens U, Dobrev D, Nattel S (2008) Changes in IK, ACh single-channel activity with atrial tachycardia remodelling in canine atrial cardiomyocytes. Cardiovasc Res 77:35–43PubMedCrossRefGoogle Scholar
  72. 72.
    Aime-Sempe C, Folliguet T, Rucker-Martin C, Krajewska M, Krajewska S, Heimburger M, Aubier M, Mercadier JJ, Reed JC, Hatem SN (1999) Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 34:1577–1586PubMedCrossRefGoogle Scholar
  73. 73.
    Schotten U, Ausma J, Stellbrink C, Sabatschus I, Vogel M, Frechen D, Schoendube F, Hanrath P, Allessie MA (2001) Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 103:691–698PubMedGoogle Scholar
  74. 74.
    Kannel WB, Abbott RD, Savage DD, McNamara PM (1982) Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med 306:1018–1022PubMedCrossRefGoogle Scholar
  75. 75.
    Brundel BJ, Van Gelder IC, Henning RH, Tieleman RG, Tuinenburg AE, Wietses M, Grandjean JG, Van Gilst WH, Crijns HJ (2001) Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103:684–690PubMedGoogle Scholar
  76. 76.
    Qi XY, Yeh YH, Xiao L, Burstein B, Maguy A, Chartier D, Villeneuve LR, Brundel BJ, Dobrev D, Nattel S (2008) Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res 103:845–854PubMedCrossRefGoogle Scholar
  77. 77.
    Sun H, Chartier D, Leblanc N, Nattel S (2001) Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc Res 49:751–761PubMedCrossRefGoogle Scholar
  78. 78.
    Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84:776–784PubMedGoogle Scholar
  79. 79.
    Brundel BJ, Ausma J, van Gelder IC, Van der Want JJ, van Gilst WH, Crijns HJ, Henning RH (2002) Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc Res 54:380–389PubMedCrossRefGoogle Scholar
  80. 80.
    Beharier O, Etzion Y, Katz A, Friedman H, Tenbosh N, Zacharish S, Bereza S, Goshen U, Moran A (2007) Crosstalk between L-type calcium channels and ZnT-1, a new player in rate-dependent cardiac electrical remodeling. Cell Calcium 42:71–82PubMedCrossRefGoogle Scholar
  81. 81.
    Beharier O, Etzion Y, Levi S, Mor M, Dror S, Kahn J, Katz A, Moran A (2010) The involvement of ZnT-1, a new modulator of cardiac L-type calcium channels, in [corrected] atrial tachycardia remodeling. [corrected]. Ann NY Acad Sci 1188:87–95PubMedCrossRefGoogle Scholar
  82. 82.
    Levy S, Beharier O, Etzion Y, Mor M, Buzaglo L, Shaltiel L, Gheber LA, Kahn J, Muslin AJ, Katz A, Gitler D, Moran A (2009) Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284:32434–32443PubMedCrossRefGoogle Scholar
  83. 83.
    Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S (2005) Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112:471–481PubMedCrossRefGoogle Scholar
  84. 84.
    Klein G, Schroder F, Vogler D, Schaefer A, Haverich A, Schieffer B, Korte T, Drexler H (2003) Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. role of phosphatase 2A. Cardiovasc Res 59:37–45PubMedCrossRefGoogle Scholar
  85. 85.
    Schotten U, Haase H, Frechen D, Greiser M, Stellbrink C, Vazquez-Jimenez JF, Morano I, Allessie MA, Hanrath P (2003) The L-type Ca2+ −channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 35:437–443PubMedCrossRefGoogle Scholar
  86. 86.
    Carnes CA, Janssen PM, Ruehr ML, Nakayama H, Nakayama T, Haase H, Bauer JA, Chung MK, Fearon IM, Gillinov AM, Hamlin RL, Van Wagoner DR (2007) Atrial glutathione content, calcium current, and contractility. J Biol Chem 282:28063–28073PubMedCrossRefGoogle Scholar
  87. 87.
    Bosch RF, Scherer CR, Rub N, Wohrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kuhlkamp V (2003) Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces ICa, L and Ito in rapid atrial pacing in rabbits. J Am Coll Cardiol 41:858–869PubMedCrossRefGoogle Scholar
  88. 88.
    Grammer JB, Zeng X, Bosch RF, Kuhlkamp V (2001) Atrial L-type Ca2+−channel, beta-adrenorecptor, and 5-hydroxytryptamine type 4 receptor mRNAs in human atrial fibrillation. Basic Res Cardiol 96:82–90PubMedCrossRefGoogle Scholar
  89. 89.
    Luo X, Pan Z, Xiao J, Zhang J, Lu Y, Yang B, Wang Z (2010) Abstract 19435: Critical role of microRNAs miR-26 and miR-101 in atrial electrical remodeling in experimental atrial fibrillation. Circulation 122:A19435Google Scholar
  90. 90.
    Voigt N, Trausch A, Knaut M, Matschke K, Varro A, Van Wagoner DR, Nattel S, Ravens U, Dobrev D (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3:472–480PubMedCrossRefGoogle Scholar
  91. 91.
    Makary S, Voigt N, Maguy A, Wakili R, Nishida K, Harada M, Dobrev D, Nattel S (2011) Differential protein kinase C isoform regulation and increased constitutive activity of acetylcholine-regulated potassium channels in atrial remodeling. Circ Res 109:1031–43Google Scholar
  92. 92.
    Burashnikov A, Antzelevitch C (2003) Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation 107:2355–2360PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of Experimental Cardiology, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  2. 2.Montreal Heart InstituteUniversity of Montreal and Research CenterMontrealCanada

Personalised recommendations