Calcium Signaling pp 235-254

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 740) | Cite as

Phospholipase C



Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate diverse functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature. In addition, references have been provided for more in depth information regarding areas that are discussed. Ultimately, understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the development of diseases and the maintenance of homeostasis.


Calcium Diacyl glycerol Heterotrimeric G protein Inositol triphosphate Isoforms Isozymes Phosphatidyl inositol Phospholipase C Signal transduction Structure 


  1. 1.
    Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203:967–977PubMedGoogle Scholar
  2. 2.
    Michell RH, Allan D (1975) Inositol cyclis phosphate as a product of phosphatidylinositol breakdown by phospholipase C (Bacillus cereus). FEBS Lett 53:302–304PubMedCrossRefGoogle Scholar
  3. 3.
    Takenawa T, Nagai Y (1982) Effect of unsaturated fatty acids and Ca2+ on phosphatidylinositol synthesis and breakdown. J Biochem 91:793–799PubMedGoogle Scholar
  4. 4.
    Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69PubMedCrossRefGoogle Scholar
  5. 5.
    Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG (1988) Inositol phospholipid-specific phospholipase C: complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc Natl Acad Sci USA 85:5419–5423PubMedCrossRefGoogle Scholar
  6. 6.
    Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG (1988) Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169PubMedCrossRefGoogle Scholar
  7. 7.
    Kelley GG, Reks SE, Ondrako JM, Smrcka AV (2001) Phospholipase C(epsilon): a novel Ras effector. EMBO J 20:743–754PubMedCrossRefGoogle Scholar
  8. 8.
    Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, Suh PG (2005) Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J 389:181–186PubMedCrossRefGoogle Scholar
  9. 9.
    Nakahara M, Shimozawa M, Nakamura Y, Irino Y, Morita M, Kudo Y, Fukami K (2005) A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme. J Biol Chem 280:29128–29134PubMedCrossRefGoogle Scholar
  10. 10.
    Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129:3533–3544PubMedGoogle Scholar
  11. 11.
    Albuquerque EX, Thesleff S (1967) Influence of phospholipase C on some electrical properties of the skeletal muscle membrane. J Physiol 190:123–137PubMedGoogle Scholar
  12. 12.
    Macchia V, Pastan I (1967) Action of phospholipase C on the thyroid. Abolition of the response to thyroid-stimulating hormone. J Biol Chem 242:1864–1869PubMedGoogle Scholar
  13. 13.
    Portela A, Perez JC, Stewart P, Perez R, Vicente JA, Luchelli MA, Paris MN (1966) Membrane response to phospholipase C and acetylcholine in cesium and potassium Ringer. Acta Physiol Lat Am 16:380–386PubMedGoogle Scholar
  14. 14.
    Trifaro JM, Lejen T, Rose SD, Pene TD, Barkar ND, Seward EP (2002) Pathways that control cortical F-actin dynamics during secretion. Neurochem Res 27:1371–1385PubMedCrossRefGoogle Scholar
  15. 15.
    Fukami K, Inanobe S, Kanemaru K, Nakamura Y (2010) Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res 49:429–437PubMedCrossRefGoogle Scholar
  16. 16.
    Sun MK, Alkon DL (2010) Pharmacology of protein kinase C activators: cognition-enhancing and antidementic therapeutics. Pharmacol Ther 127:66–77PubMedCrossRefGoogle Scholar
  17. 17.
    Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11:103–112PubMedCrossRefGoogle Scholar
  18. 18.
    Akutagawa A, Fukami K, Banno Y, Takenawa T, Kannagi R, Yokoyama Y, Oda K, Nagino M, Nimura Y, Yoshida S, Tamiya-Koizumi K (2006) Disruption of phospholipase Cdelta4 gene modulates the liver regeneration in cooperation with nuclear protein kinase C. J Biochem 140:619–625PubMedCrossRefGoogle Scholar
  19. 19.
    Hashimoto A, Takeda K, Inaba M, Sekimata M, Kaisho T, Ikehara S, Homma Y, Akira S, Kurosaki T (2000) Cutting edge: essential role of phospholipase C-gamma 2 in B cell development and function. J Immunol 165:1738–1742PubMedGoogle Scholar
  20. 20.
    Hong J, Behar J, Wands J, Resnick M, Wang LJ, Delellis RA, Lambeth D, Cao W (2010) Bile acid reflux contributes to development of esophageal adenocarcinoma via activation of phosphatidylinositol-specific phospholipase Cgamma2 and NADPH oxidase NOX5-S. Cancer Res 70:1247–1255PubMedCrossRefGoogle Scholar
  21. 21.
    Li M, Edamatsu H, Kitazawa R, Kitazawa S, Kataoka T (2009) Phospholipase Cepsilon promotes intestinal tumorigenesis of Apc(Min/+) mice through augmentation of inflammation and angiogenesis. Carcinogenesis 30:1424–1432PubMedCrossRefGoogle Scholar
  22. 22.
    Sun C, Wang N, Huang J, Xin J, Peng F, Ren Y, Zhang S, Miao J (2009) Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro. J Cell Biochem 108:519–528PubMedCrossRefGoogle Scholar
  23. 23.
    Varela D, Simon F, Olivero P, Armisen R, Leiva-Salcedo E, Jorgensen F, Sala F, Stutzin A (2007) Activation of H2O2-induced VSOR Cl- currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation. Cell Physiol Biochem 20:773–780PubMedCrossRefGoogle Scholar
  24. 24.
    Wahl MI, Olashaw NE, Nishibe S, Rhee SG, Pledger WJ, Carpenter G (1989) Platelet-derived growth factor induces rapid and sustained tyrosine phosphorylation of phospholipase C-gamma in quiescent BALB/c 3T3 cells. Mol Cell Biol 9:2934–2943PubMedGoogle Scholar
  25. 25.
    Wang D, Feng J, Wen R, Marine JC, Sangster MY, Parganas E, Hoffmeyer A, Jackson CW, Cleveland JL, Murray PJ, Ihle JN (2000) Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 13:25–35PubMedCrossRefGoogle Scholar
  26. 26.
    Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434PubMedCrossRefGoogle Scholar
  27. 27.
    Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36:88–96PubMedCrossRefGoogle Scholar
  28. 28.
    Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221PubMedCrossRefGoogle Scholar
  29. 29.
    Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371:168–170PubMedCrossRefGoogle Scholar
  30. 30.
    Jezyk MR, Snyder JT, Gershberg S, Worthylake DK, Harden TK, Sondek J (2006) Crystal structure of Rac1 bound to its effector phospholipase C-beta2. Nat Struct Mol Biol 13:1135–1140PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto T, Takeuchi H, Kanematsu T, Allen V, Yagisawa H, Kikkawa U, Watanabe Y, Nakasima A, Katan M, Hirata M (1999) Involvement of EF hand motifs in the Ca(2+)-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem 265:481–490PubMedCrossRefGoogle Scholar
  32. 32.
    Touhara K, Inglese J, Pitcher JA, Shaw G, Lefkowitz RJ (1994) Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem 269:10217–10220PubMedGoogle Scholar
  33. 33.
    Kawasaki H, Kretsinger RH (1994) Calcium-binding proteins. 1: EF-hands. Protein Profile 1:343–517PubMedGoogle Scholar
  34. 34.
    Essen LO, Perisic O, Cheung R, Katan M, Williams RL (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380:595–602PubMedCrossRefGoogle Scholar
  35. 35.
    Rhee SG, Choi KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396PubMedGoogle Scholar
  36. 36.
    Essen LO, Perisic O, Lynch DE, Katan M, Williams RL (1997) A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1. Biochemistry 36:2753–2762PubMedCrossRefGoogle Scholar
  37. 37.
    Otterhag L, Sommarin M, Pical C (2001) N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett 497:165–170PubMedCrossRefGoogle Scholar
  38. 38.
    Waldo GL, Ricks TK, Hicks SN, Cheever ML, Kawano T, Tsuboi K, Wang X, Montell C, Kozasa T, Sondek J, Harden TK (2010) Kinetic scaffolding mediated by a phospholipase C-beta and Gq signaling complex. Science 330:974–980PubMedCrossRefGoogle Scholar
  39. 39.
    Ellis MV (1995) U S, Katan M: Mutations within a highly conserved sequence present in the X region of phosphoinositide-specific phospholipase C-delta 1. Biochem J 307(Pt 1):69–75PubMedGoogle Scholar
  40. 40.
    Nagano N, Orengo CA, Thornton JM (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321:741–765PubMedCrossRefGoogle Scholar
  41. 41.
    Williams RL (1999) Mammalian phosphoinositide-specific phospholipase C. Biochim Biophys Acta 1441:255–267PubMedGoogle Scholar
  42. 42.
    Ryu SH, Suh PG, Cho KS, Lee KY, Rhee SG (1987) Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C. Proc Natl Acad Sci USA 84:6649–6653PubMedCrossRefGoogle Scholar
  43. 43.
    Margolis B, Zilberstein A, Franks C, Felder S, Kremer S, Ullrich A, Rhee SG, Skorecki K, Schlessinger J (1990) Effect of phospholipase C-gamma overexpression on PDGF-induced second messengers and mitogenesis. Science 248:607–610PubMedCrossRefGoogle Scholar
  44. 44.
    Meisenhelder J, Suh PG, Rhee SG, Hunter T (1989) Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57:1109–1122PubMedCrossRefGoogle Scholar
  45. 45.
    Wahl MI, Daniel TO, Carpenter G (1988) Antiphosphotyrosine recovery of phospholipase C activity after EGF treatment of A-431 cells. Science 241:968–970PubMedCrossRefGoogle Scholar
  46. 46.
    Ronnstrand L, Mori S, Arridsson AK, Eriksson A, Wernstedt C, Hellman U, Claesson-Welsh L, Heldin CH (1992) Identification of two C-terminal autophosphorylation sites in the PDGF beta-receptor: involvement in the interaction with phospholipase C-gamma. EMBO J 11:3911–3919PubMedGoogle Scholar
  47. 47.
    Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441PubMedCrossRefGoogle Scholar
  48. 48.
    Gout I, Dhand R, Hiles ID, Fry MJ, Panayotou G, Das P, Truong O, Totty NF, Hsuan J, Booker GW et al (1993) The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75:25–36PubMedGoogle Scholar
  49. 49.
    Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J (1993) SH3 domains direct cellular localization of signaling molecules. Cell 74:83–91PubMedCrossRefGoogle Scholar
  50. 50.
    van Huizen R, Miller K, Chen DM, Li Y, Lai ZC, Raab RW, Stark WS, Shortridge RD, Li M (1998) Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J 17:2285–2297PubMedCrossRefGoogle Scholar
  51. 51.
    Yamaguchi T, Shirataki H, Kishida S, Miyazaki M, Nishikawa J, Wada K, Numata S, Kaibuchi K, Takai Y (1993) Two functionally different domains of rabphilin-3A, Rab3A p25/smg p25A-binding and phospholipid- and Ca(2+)-binding domains. J Biol Chem 268:27164–27170PubMedGoogle Scholar
  52. 52.
    Luo JH, Weinstein IB (1993) Calcium-dependent activation of protein kinase C. The role of the C2 domain in divalent cation selectivity. J Biol Chem 268:23580–23584PubMedGoogle Scholar
  53. 53.
    Davletov BA, Sudhof TC (1993) A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 268:26386–26390PubMedGoogle Scholar
  54. 54.
    Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6:1385–1388PubMedCrossRefGoogle Scholar
  55. 55.
    Wang CK, Pan L, Chen J, Zhang M (2010) Extensions of PDZ domains as important structural and functional elements. Protein Cell 1:737–751PubMedCrossRefGoogle Scholar
  56. 56.
    Kim JK, Lim S, Kim J, Kim S, Kim JH, Ryu SH, Suh PG (2011) Subtype-specific roles of phospholipase C-beta via differential interactions with PDZ domain proteins. Adv Enzyme Regul 51:138–151PubMedCrossRefGoogle Scholar
  57. 57.
    Charnock-Jones DS, Day K, Smith SK (1996) Cloning, expression and genomic organization of human placental protein disulfide isomerase (previously identified as phospholipase C alpha). Int J Biochem Cell Biol 28:81–89PubMedCrossRefGoogle Scholar
  58. 58.
    Lagercrantz J, Carson E, Phelan C, Grimmond S, Rosen A, Dare E, Nordenskjold M, Hayward NK, Larsson C, Weber G (1995) Genomic organization and complete cDNA sequence of the human phosphoinositide-specific phospholipase C beta 3 gene (PLCB3). Genomics 26:467–472PubMedCrossRefGoogle Scholar
  59. 59.
    Mao GF, Kunapuli SP, Rao AK (2000) Evidence for two alternatively spliced forms of phospholipase C-beta2 in haematopoietic cells. Br J Haematol 110:402–408PubMedCrossRefGoogle Scholar
  60. 60.
    Kim MJ, Min DS, Ryu SH, Suh PG (1998) A cytosolic, galphaq- and betagamma-insensitive splice variant of phospholipase C-beta4. J Biol Chem 273:3618–3624PubMedCrossRefGoogle Scholar
  61. 61.
    Berstein G, Blank JL, Jhon DY, Exton JH, Rhee SG, Ross EM (1992) Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70:411–418PubMedCrossRefGoogle Scholar
  62. 62.
    Runnels LW, Scarlata SF (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase C-beta effectors. Biochemistry 38:1488–1496PubMedCrossRefGoogle Scholar
  63. 63.
    Hwang JI, Heo K, Shin KJ, Kim E, Yun C, Ryu SH, Shin HS, Suh PG (2000) Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2. J Biol Chem 275:16632–16637PubMedCrossRefGoogle Scholar
  64. 64.
    Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 360:684–686PubMedCrossRefGoogle Scholar
  65. 65.
    Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L (1992) Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3 T3 cells. Nature 358:242–245PubMedCrossRefGoogle Scholar
  66. 66.
    Kim CG, Park D, Rhee SG (1996) The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J Biol Chem 271:21187–21192PubMedCrossRefGoogle Scholar
  67. 67.
    Payrastre B, Nievers M, Boonstra J, Breton M, Verkleij AJ, Van Bergen en Henegouwen PM (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem 267:5078–5084PubMedGoogle Scholar
  68. 68.
    Wang HL (1997) Basic amino acids at the C-terminus of the third intracellular loop are required for the activation of phospholipase C by cholecystokinin-B receptors. J Neurochem 68:1728–1735PubMedCrossRefGoogle Scholar
  69. 69.
    Adamski FM, Timms KM, Shieh BH (1999) A unique isoform of phospholipase Cbeta4 highly expressed in the cerebellum and eye. Biochim Biophys Acta 1444:55–60PubMedGoogle Scholar
  70. 70.
    Min DS, Kim DM, Lee YH, Seo J, Suh PG, Ryu SH (1993) Purification of a novel phospholipase C isozyme from bovine cerebellum. J Biol Chem 268:12207–12212PubMedGoogle Scholar
  71. 71.
    Alvarez RA, Ghalayini AJ, Xu P, Hardcastle A, Bhattacharya S, Rao PN, Pettenati MJ, Anderson RE, Baehr W (1995) cDNA sequence and gene locus of the human retinal phosphoinositide-specific phospholipase-C beta 4 (PLCB4). Genomics 29:53–61PubMedCrossRefGoogle Scholar
  72. 72.
    Harden TK, Hicks SN, Sondek J (2009) Phospholipase C isozymes as effectors of Ras superfamily GTPases. J Lipid Res 50:S243–S248PubMedCrossRefGoogle Scholar
  73. 73.
    Snyder JT, Singer AU, Wing MR, Harden TK, Sondek J (2003) The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. J Biol Chem 278:21099–21104PubMedCrossRefGoogle Scholar
  74. 74.
    Jhon DY, Lee HH, Park D, Lee CW, Lee KH, Yoo OJ, Rhee SG (1993) Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3. J Biol Chem 268:6654–6661PubMedGoogle Scholar
  75. 75.
    Park D, Jhon DY, Kriz R, Knopf J, Rhee SG (1992) Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J Biol Chem 267:16048–16055PubMedGoogle Scholar
  76. 76.
    Kim D, Jun KS, Lee SB, Kang NG, Min DS, Kim YH, Ryu SH, Suh PG, Shin HS (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293PubMedCrossRefGoogle Scholar
  77. 77.
    Lee SB, Shin SH, Hepler JR, Gilman AG, Rhee SG (1993) Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J Biol Chem 268:25952–25957PubMedGoogle Scholar
  78. 78.
    Wang T, Pentyala S, Elliott JT, Dowal L, Gupta E, Rebecchi MJ, Scarlata S (1999) Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. Proc Natl Acad Sci USA 96:7843–7846PubMedCrossRefGoogle Scholar
  79. 79.
    Wang T, Pentyala S, Rebecchi MJ, Scarlata S (1999) Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry 38:1517–1524PubMedCrossRefGoogle Scholar
  80. 80.
    Cockcroft S, Thomas GM (1992) Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 288(Pt 1):1–14PubMedGoogle Scholar
  81. 81.
    Rivas M, Santisteban P (2003) TSH-activated signaling pathways in thyroid tumorigenesis. Mol Cell Endocrinol 213:31–45PubMedCrossRefGoogle Scholar
  82. 82.
    Kroczek C, Lang C, Brachs S, Grohmann M, Dutting S, Schweizer A, Nitschke L, Feller SM, Jack HM, Mielenz D (2010) Swiprosin-1/EFhd2 controls B cell receptor signaling through the assembly of the B cell receptor, Syk, and phospholipase C gamma2 in membrane rafts. J Immunol 184:3665–3676PubMedCrossRefGoogle Scholar
  83. 83.
    Ji QS, Winnier GE, Niswender KD, Horstman D, Wisdom R, Magnuson MA, Carpenter G (1997) Essential role of the tyrosine kinase substrate phospholipase C-gamma1 in mammalian growth and development. Proc Natl Acad Sci USA 94:2999–3003PubMedCrossRefGoogle Scholar
  84. 84.
    Wonerow P, Pearce AC, Vaux DJ, Watson SP (2003) A critical role for phospholipase Cgamma2 in alphaIIbbeta3-mediated platelet spreading. J Biol Chem 278:37520–37529PubMedCrossRefGoogle Scholar
  85. 85.
    Inoue O, Suzuki-Inoue K, Dean WL, Frampton J, Watson SP (2003) Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J Cell Biol 160:769–780PubMedCrossRefGoogle Scholar
  86. 86.
    Rhee SG, Kim H, Suh PG, Choi WC (1991) Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans 19:337–341PubMedGoogle Scholar
  87. 87.
    Homma Y, Takenawa T, Emori Y, Sorimachi H, Suzuki K (1989) Tissue- and cell type-specific expression of mRNAs for four types of inositol phospholipid-specific phospholipase C. Biochem Biophys Res Commun 164:406–412PubMedCrossRefGoogle Scholar
  88. 88.
    Kim MJ, Chang JS, Park SK, Hwang JI, Ryu SH, Suh PG (2000) Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1. Biochemistry 39:8674–8682PubMedCrossRefGoogle Scholar
  89. 89.
    Wen W, Yan J, Zhang M (2006) Structural characterization of the split pleckstrin homology domain in phospholipase C-gamma1 and its interaction with TRPC3. J Biol Chem 281:12060–12068PubMedCrossRefGoogle Scholar
  90. 90.
    Braiman A, Barda-Saad M, Sommers CL, Samelson LE (2006) Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains. EMBO J 25:774–784PubMedCrossRefGoogle Scholar
  91. 91.
    Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A (1998) LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 9:617–626PubMedCrossRefGoogle Scholar
  92. 92.
    Stoica B, DeBell KE, Graham L, Rellahan BL, Alava MA, Laborda J, Bonvini E (1998) The amino-terminal Src homology 2 domain of phospholipase C gamma 1 is essential for TCR-induced tyrosine phosphorylation of phospholipase C gamma 1. J Immunol 160:1059–1066PubMedGoogle Scholar
  93. 93.
    Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE (2000) Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem 275:23355–23361PubMedCrossRefGoogle Scholar
  94. 94.
    Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL, Stone JC (2000) RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 1:317–321PubMedCrossRefGoogle Scholar
  95. 95.
    Ebinu JO, Stang SL, Teixeira C, Bottorff DA, Hooton J, Blumberg PM, Barry M, Bleakley RC, Ostergaard HL, Stone JC (2000) RasGRP links T-cell receptor signaling to Ras. Blood 95:3199–3203PubMedGoogle Scholar
  96. 96.
    Shannon LA, Calloway PA, Welch TP, Vines CM (2010) CCR7/CCL21 migration on fibronectin is mediated by phospholipase Cgamma1 and ERK1/2 in primary T lymphocytes. J Biol Chem 285:38781–38787PubMedCrossRefGoogle Scholar
  97. 97.
    Meldrum E, Kriz RW, Totty N, Parker PJ (1991) A second gene product of the inositol-phospholipid-specific phospholipase C delta subclass. Eur J Biochem 196:159–165PubMedCrossRefGoogle Scholar
  98. 98.
    Irino Y, Cho H, Nakamura Y, Nakahara M, Furutani M, Suh PG, Takenawa T, Fukami K (2004) Phospholipase C delta-type consists of three isozymes: bovine PLCdelta2 is a homologue of human/mouse PLCdelta4. Biochem Biophys Res Commun 320:537–543PubMedCrossRefGoogle Scholar
  99. 99.
    Allen V, Swigart P, Cheung R, Cockcroft S, Katan M (1997) Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J 327(Pt 2):545–552PubMedGoogle Scholar
  100. 100.
    Kim YH, Park TJ, Lee YH, Baek KJ, Suh PG, Ryu SH, Kim KT (1999) Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J Biol Chem 274:26127–26134PubMedCrossRefGoogle Scholar
  101. 101.
    Yamaga M, Fujii M, Kamata H, Hirata H, Yagisawa H (1999) Phospholipase C-delta1 contains a functional nuclear export signal sequence. J Biol Chem 274:28537–28541PubMedCrossRefGoogle Scholar
  102. 102.
    Stallings JD, Tall EG, Pentyala S, Rebecchi MJ (2005) Nuclear translocation of phospholipase C-delta1 is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J Biol Chem 280:22060–22069PubMedCrossRefGoogle Scholar
  103. 103.
    Yoko-o T, Matsui Y, Yagisawa H, Nojima H, Uno I, Toh-e A (1993) The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci USA 90:1804–1808PubMedCrossRefGoogle Scholar
  104. 104.
    Murthy KS, Zhou H, Huang J, Pentyala SN (2004) Activation of PLC-delta1 by Gi/o-coupled receptor agonists. Am J Physiol Cell Physiol 287:C1679–C1687PubMedCrossRefGoogle Scholar
  105. 105.
    Shimohama S, Homma Y, Suenaga T, Fujimoto S, Taniguchi T, Araki W, Yamaoka Y, Takenawa T, Kimura J (1991) Aberrant accumulation of phospholipase C-delta in Alzheimer brains. Am J Pathol 139:737–742PubMedGoogle Scholar
  106. 106.
    Yagisawa H, Tanase H, Nojima H (1991) Phospholipase C-delta gene of the spontaneously hypertensive rat harbors point mutations causing amino acid substitutions in a catalytic domain. J Hypertens 9:997–1004PubMedCrossRefGoogle Scholar
  107. 107.
    Nakamura Y, Ichinohe M, Hirata M, Matsuura H, Fujiwara T, Igarashi T, Nakahara M, Yamaguchi H, Yasugi S, Takenawa T, Fukami K (2008) Phospholipase C-delta1 is an essential molecule downstream of Foxn1, the gene responsible for the nude mutation, in normal hair development. FASEB J 22:841–849PubMedCrossRefGoogle Scholar
  108. 108.
    Ichinohe M, Nakamura Y, Sai K, Nakahara M, Yamaguchi H, Fukami K (2007) Lack of phospholipase C-delta1 induces skin inflammation. Biochem Biophys Res Commun 356:912–918PubMedCrossRefGoogle Scholar
  109. 109.
    Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, Mikoshiba K, Takenawa T (2003) Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161:79–88PubMedCrossRefGoogle Scholar
  110. 110.
    Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, Nakamura K, Katsuki M, Mikoshiba K, Yoshida N, Takenawa T (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292:920–923PubMedCrossRefGoogle Scholar
  111. 111.
    Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276:2758–2765PubMedCrossRefGoogle Scholar
  112. 112.
    Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T (2001) Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem 276:2752–2757PubMedCrossRefGoogle Scholar
  113. 113.
    Shibatohge M, Kariya K, Liao Y, Hu CD, Watari Y, Goshima M, Shima F, Kataoka T (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J Biol Chem 273:6218–6222PubMedCrossRefGoogle Scholar
  114. 114.
    Wing MR, Snyder JT, Sondek J, Harden TK (2003) Direct activation of phospholipase C-epsilon by Rho. J Biol Chem 278:41253–41258PubMedCrossRefGoogle Scholar
  115. 115.
    Wing MR, Bourdon DM, Harden TK (2003) PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv 3:273–280PubMedCrossRefGoogle Scholar
  116. 116.
    Schmidt M, Evellin S, Weernink PA, Von Dorp F, Rehmann H, Lomasney JW, Jakobs KH (2001) A new phospholipase-C calcium signaling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3:1020–1024PubMedCrossRefGoogle Scholar
  117. 117.
    Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PA, Jakobs KH, Webb EJ, Lomasney JW, Schmidt M (2002) Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem 277:16805–16813PubMedCrossRefGoogle Scholar
  118. 118.
    Jin TG, Satoh T, Liao Y, Song C, Gao X, Kariya K, Hu CD, Kataoka T (2001) Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J Biol Chem 276:30301–30307PubMedCrossRefGoogle Scholar
  119. 119.
    Fujimoto S, Yoshida N, Fukui T, Amanai M, Isobe T, Itagaki C, Izumi T, Perry AC (2004) Mammalian phospholipase Czeta induces oocyte activation from the sperm perinuclear matrix. Dev Biol 274:370–383PubMedCrossRefGoogle Scholar
  120. 120.
    Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA (2002) Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124:611–623PubMedCrossRefGoogle Scholar
  121. 121.
    Jones KT, Matsuda M, Parrington J, Katan M, Swann K (2000) Different Ca2+-releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs. Biochem J 346(Pt 3):743–749PubMedCrossRefGoogle Scholar
  122. 122.
    Swann K, Saunders CM, Rogers NT, Lai FA (2006) PLCzeta(zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin Cell Dev Biol 17:264–273PubMedCrossRefGoogle Scholar
  123. 123.
    Nomikos M, Blayney LM, Larman MG, Campbell K, Rossbach A, Saunders CM, Swann K, Lai FA (2005) Role of phospholipase C-zeta domains in Ca2+-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2+ oscillations. J Biol Chem 280:31011–31018PubMedCrossRefGoogle Scholar
  124. 124.
    Halet G, Marangos P, Fitzharris G, Carroll J (2003) Ca2+ oscillations at fertilization in mammals. Biochem Soc Trans 31:907–911PubMedCrossRefGoogle Scholar
  125. 125.
    Marangos P, FitzHarris G, Carroll J (2003) Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei. Development 130:1461–1472PubMedCrossRefGoogle Scholar
  126. 126.
    Stewart AJ, Mukherjee J, Roberts SJ, Lester D, Farquharson C (2005) Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. Int J Mol Med 15:117–121PubMedGoogle Scholar
  127. 127.
    Zhou Y, Wing MR, Sondek J, Harden TK (2005) Molecular cloning and characterization of PLC-eta2. Biochem J 391:667–676PubMedCrossRefGoogle Scholar
  128. 128.
    Kim JK, Choi JW, Lim S, Kwon O, Seo JK, Ryu SH, Suh PG (2011) Phospholipase C-eta1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling. Cell Signal 23:1022–1029PubMedCrossRefGoogle Scholar
  129. 129.
    Lo Vasco VR (2011) Role of Phosphoinositide-Specific Phospholipase C eta2 in Isolated and Syndromic Mental Retardation. Eur Neurol 65:264–269PubMedCrossRefGoogle Scholar
  130. 130.
    Wang C, Du XN, Jia QZ, Zhang HL (2005) Binding of PLCdelta1PH-GFP to PtdIns(4,5)P2 prevents inhibition of phospholipase C-mediated hydrolysis of PtdIns(4,5)P2 by neomycin. Acta Pharmacol Sin 26:1485–1491PubMedCrossRefGoogle Scholar
  131. 131.
    Klein RR, Bourdon DM, Costales CL, Wagner CD, White WL, Williams JD, Hicks SN, Sondek J, Thakker DR (2011) Direct activation of human phospholipase C by its well known inhibitor u73122. J Biol Chem 286:12407–12416PubMedCrossRefGoogle Scholar
  132. 132.
    Dwyer L, Kim HJ, Koh BH, Koh SD (2010) Phospholipase C-independent effects of 3M3FBS in murine colon. Eur J Pharmacol 628:187–194PubMedCrossRefGoogle Scholar
  133. 133.
    Frei E, Hofmann F, Wegener JW (2009) Phospholipase C mediated Ca2+ signals in murine urinary bladder smooth muscle. Eur J Pharmacol 610:106–109PubMedCrossRefGoogle Scholar
  134. 134.
    Xu S, Huo J, Lee KG, Kurosaki T, Lam KP (2009) Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem 284:7038–7046PubMedCrossRefGoogle Scholar
  135. 135.
    Shi TJ, Liu SX, Hammarberg H, Watanabe M, Xu ZQ, Hokfelt T (2008) Phospholipase C{beta}3 in mouse and human dorsal root ganglia and spinal cord is a possible target for treatment of neuropathic pain. Proc Natl Acad Sci USA 105:20004–20008PubMedCrossRefGoogle Scholar
  136. 136.
    Ibrahim S, Calzada C, Pruneta-Deloche V, Lagarde M, Ponsin G (2007) The transfer of VLDL-associated phospholipids to activated platelets depends upon cytosolic phospholipase A2 activity. J Lipid Res 48:1533–1538PubMedCrossRefGoogle Scholar
  137. 137.
    Sickmann T, Klose A, Huth T, Alzheimer C (2008) Unexpected suppression of neuronal G protein-activated, inwardly rectifying K+ current by common phospholipase C inhibitor. Neurosci Lett 436:102–106PubMedCrossRefGoogle Scholar
  138. 138.
    Kim DD, Ramirez MM, Duran WN (2000) Platelet-activating factor modulates microvascular dynamics through phospholipase C in the hamster cheek pouch. Microvasc Res 59:7–13PubMedCrossRefGoogle Scholar
  139. 139.
    Naito Y, Okada M, Yagisawa H (2006) Phospholipase C isoforms are localized at the cleavage furrow during cytokinesis. J Biochem 140:785–791PubMedCrossRefGoogle Scholar
  140. 140.
    Grotterod I, Maelandsmo GM, Boye K (2010) Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-kappaB. BMC Cancer 10:241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations