The Fungal Spores Survival Under the Low-Temperature Plasma

  • Hana Soušková
  • V. Scholtz
  • J. Julák
  • D. Savická
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

Keywords

Fungal Spore Corona Discharge Aspergillus Oryzae Fungicidal Effect Direct Current High Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by grants No. MSM ČR 6046137306, MSM ČR 0021620806 and SVV-2010-26 0506.

References

  1. 1.
    Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes Polym 2:391–400CrossRefGoogle Scholar
  2. 2.
    Scholtz V, Julák J, Kříha V, Mosinger J (2008) Decontamination effects of low-temperature plasma generated by corona discharge. Part I: an overview. Prague Med Rep 108:115–127Google Scholar
  3. 3.
    Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617CrossRefGoogle Scholar
  4. 4.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Processes Polym 5:503–533CrossRefGoogle Scholar
  5. 5.
    Scholtz V (2005) Corona discharge influence on micro-organisms. Probl Atomic Sci Technol 10(1):190–191MathSciNetGoogle Scholar
  6. 6.
    Akishev Y, Grushin M, Karalnik V, Trushkin N, Kholodenko V, Chugunov V, Kobzev E, Zhirkova N, Irkhina I, Kireev G (2008) Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl Chem 80:1953–1969CrossRefGoogle Scholar
  7. 7.
    Soušková H (2010) Působení korónového výboje na spory mikromycet. Bachelors theses, Institute of Chemical Technology in PragueGoogle Scholar
  8. 8.
    Vannini L, Montanari C, Berardinelli A, Ragni L, Sirri F, Guerzoni ME (2009) Assessment of the efficacy of a low-temperature gas plasma prototype for superficial decontamination of table eggs. In: Proceedings of WPSA XIX European symposium on the quality of poultry meat, Finland, pp 1–8Google Scholar
  9. 9.
    Berardinelli A, Ragni L, Vannini L, Montanatri C, Sirri F, Guarniery A, Guerzoni ME (2009) Atmospheric-pressure gas plasma for decontamination of food products. In: Proceedings of XXXIII CIOSTA CIGR V conference 2009, Reggio di Calabria, pp 73–77Google Scholar
  10. 10.
    Chang J-S, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19:1152–1166CrossRefADSGoogle Scholar
  11. 11.
    Scholtz V, Julák J, Kříha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Processes Polym 7:237–243CrossRefGoogle Scholar
  12. 12.
    Julák J, Kříha V, Scholtz V (2006) Corona discharge: a simple method of its generation and study of its bactericidal properties. Czech J Phys 56:B1333–B1338CrossRefGoogle Scholar
  13. 13.
    Machala Z, Chládeková L, Pelach M (2010) Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D Appl Phys 43:222001CrossRefADSGoogle Scholar
  14. 14.
    Akishev YS, Grushin ME, Kochetov IV, Napartovich AP, Pankin MV, Trushkin NI (2000) Transition of a multipin negative corona in atmospheric air to a glow discharge. Plasma Phys Rep 26:172–178CrossRefGoogle Scholar
  15. 15.
    Horák P, Khun J (2010) Impedance-stabilized positive corona discharge and its decontamination properties. J Phys Conf Ser 223:012006CrossRefADSGoogle Scholar
  16. 16.
    Latgé JP (2007) The cell wall: a carbohydrate armour for the fungi cell. Mol Microbiol 66(2):279–290CrossRefGoogle Scholar
  17. 17.
    Scholtz V, Kommová L, Julák J (2011) The influence of parameters of stabilized corona discharges on its germicidal effects. Acta Phys Pol A 119:803–806Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hana Soušková
    • 1
  • V. Scholtz
    • 2
  • J. Julák
    • 3
  • D. Savická
    • 4
  1. 1.Department of Computing and Control EngineeringInstitute of Chemical Technology in PraguePrahaCzech Republic
  2. 2.Department of Physics and MeasurementsInstitute of Chemical Technology in PraguePrahaCzech Republic
  3. 3.Institute of Immunology and Microbiology, First Faculty of MedicineCharles University in PraguePrahaCzech Republic
  4. 4.Department of Biochemistry and Microbiology, Faculty of Food and Biochemical TechnologyInstitute of Chemical Technology in PraguePrahaCzech Republic

Personalised recommendations