Biological Decontamination Using Pulsed Filamentary Microplasma Jet

  • Ramasamy Pothiraja
  • Jan-Wilm Lackmann
  • Gernot Keil
  • Nikita Bibinov
  • Peter Awakowicz
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Microplasma jet for the generation of pulsed filamentary discharge at atmospheric pressure has been devised for biological decontamination as well as for modification of surface properties. Long plasma-filament is generated inside a quartz tube and characterized using optical emission spectroscopy, current voltage measurements, numerical simulations and microphotography. Efficiency of our plasma source for the decontamination on inner surface of the tube as well as on objects placed in proximity of plasma effluent is studied. Escherichia coli (Gram-negative bacteria) and spores of Bacillus atrophaeus (Gram-positive bacteria) are used for the decontamination studies. Decontamination of Bacillus atrophaeus endospores, which are layered on PET polymer material, and placed in the proximity of plasma effluent, shows the mean logarithmic bacterial reduction of 3.67 for the treatment time of 120 s. Inactivation of Escherichia coli coated on inner surface of the tube shows the mean logarithmic bacterial reduction of about 5 for the treatment time of 30 s. In addition to this, inhibition studies of bacteria coated on agar plate are also carried out. It shows plasma effluent generated in our plasma source is very effective for the inhibition of bacterial colonization.

Keywords

Plasma Source Rotational Temperature Electron Impact Excitation Electron Velocity Distribution Function Current Voltage Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhang X, Li M, Zhou R, Feng K, Yang S (2008) Ablation of liver cancer cells in vitro by a plasma needle. Appl Phys Lett 93:021502ADSCrossRefGoogle Scholar
  2. 2.
    Uhm HS, Lim JP, Li SZ (2007) Sterilization of bacterial endospores by an atmospheric-­pressure argon plasma jet. Appl Phys Lett 90:261501ADSCrossRefGoogle Scholar
  3. 3.
    Sladek REJ, Stoffels E, Walraven R, Tielbeek PJA, Koolhoven RA (2004) Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci 32:1540–1543ADSCrossRefGoogle Scholar
  4. 4.
    Vargo JJ (2004) Clinical applications of the argon plasma coagulator. Gastrointest Endosc 59:81–88CrossRefGoogle Scholar
  5. 5.
    Nosenko T, Shimizu T, Morfill GE (2009) Designing plasmas for chronic wound disinfection. New J Phys 11:115013CrossRefGoogle Scholar
  6. 6.
    Laroussi M, Alexeff I, Richardson JP, Dyer FF (2002) The resistive barrier discharge. IEEE Trans Plasma Sci 30:158–159ADSCrossRefGoogle Scholar
  7. 7.
    Lee MH, Park BJ, Jin SC, Kim D, Han I, Kim J, Hyun SO, Chung K-H, Park J-C (2009) Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure. New J Phys 11:115022CrossRefGoogle Scholar
  8. 8.
    Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, Ayan H, Friedman G (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Processes Polym 4:370–375CrossRefGoogle Scholar
  9. 9.
    Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316ADSCrossRefGoogle Scholar
  10. 10.
    Machala Z, Chlàdekovà L, Pelach M (2010) Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D Appl Phys 43:222001ADSCrossRefGoogle Scholar
  11. 11.
    Daeschlein G, Tv W, Kindel E, Brandenburg R, Weltmann K-D, Jünger M (2010) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a mimulated wound environment. Plasma Processes Polym 7:224–230CrossRefGoogle Scholar
  12. 12.
    Pothiraja R, Bibinov N, Awakowicz P (2010) Pulsed corona plasma source characterization for film deposition on the inner surface of tubes. J Phys D Appl Phys 43:495201CrossRefGoogle Scholar
  13. 13.
    Bibinov N, Halfmann H, Awakowicz P, Wiesemann K (2007) Relative and absolute intensity calibrations of a modern broadband echelle spectrometer. Meas Sci Technol 18:1327–1337ADSCrossRefGoogle Scholar
  14. 14.
    Bibinov NK, Fateev AA, Wiesemann K (2001) On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures. J Phys D Appl Phys 34:1819–1826ADSCrossRefGoogle Scholar
  15. 15.
    Nguyen TD, Sadeghi N (1983) Rotational and vibrational distributions of N2(C 3Πu) excited by state-selected Ar(3P2) and Ar(3P0) metastable atoms. Chem Phys 79:41–55CrossRefGoogle Scholar
  16. 16.
    Stefanovíc I, Bibinov NK, Deryugin AA, Vinogradov IP, Napartovich AP, Wiesemann K (2001) Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NOx and N2/O2/NOx mixtures. Plasma Sources Sci Technol 10:406–416ADSCrossRefGoogle Scholar
  17. 17.
    Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35:31–53ADSCrossRefGoogle Scholar
  18. 18.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1–3, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  19. 19.
    Avramidis G, Stüwe B, Wascher R, Bellmann M, Wieneke S, von Tiedemann A, Viöl W (2010) Fungicidal effects of an atmospheric pressure gas discharge and degradation mechanisms. Surf CoatTechnol 205:S405–S408CrossRefGoogle Scholar
  20. 20.
    Binkley RW, Binkley WW (1972) Photochemical reactions of carbohydrates. Carbohydr Res 23:283–288CrossRefGoogle Scholar
  21. 21.
    Sobottka A, Drößler L, Lenk M, Prager L, Buchmeiser MR (2010) An open argon dielectric barrier discharge VUV-source. Plasma Processes Polym 7:650–656CrossRefGoogle Scholar
  22. 22.
    Seo YS, Mohamed A-AH, Woo KC, Lee HW, Lee JK, Kim KT (2010) Comparative studies of atmospheric pressure plasma characteristics between He and Ar working gases for sterilization. IEEE Trans Plasma Sci 38:2954–2962CrossRefGoogle Scholar
  23. 23.
    Xu G, Zhang G, Shi X, Ma Y, Wang N, Li Y (2009) Bacteria inactivation using DBD plasma jet in atmospheric pressure argon. Plasma Sci Technol 11:83–88ADSCrossRefGoogle Scholar
  24. 24.
    Lim J-P, Uhma HS, Li S-Z (2007) Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores. Phys Plasmas 14:093504ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ramasamy Pothiraja
    • 1
  • Jan-Wilm Lackmann
    • 2
  • Gernot Keil
    • 3
  • Nikita Bibinov
    • 1
  • Peter Awakowicz
    • 1
  1. 1.Institute for Electrical Engineering and Plasma TechnologyRuhr-Universität BochumBochumGermany
  2. 2.Microbial Biology, Department for Biology and BiotechnologyRuhr University BochumBochumGermany
  3. 3.KHS GmbHBad KreuznachGermany

Personalised recommendations