Estimation of Age-Depth Relationships

Chapter
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 5)

Abstract

An accurate and precise chronology is an essential pre-requisite for any palaeolimnological study. Chronologies give time-scales for events, and hence for rates for patterns and processes, and make it possible to compare and correlate events in different stratigraphical sequences. Palaeolimnology without chronology is history without dates.

As radiocarbon dating is so widely used in palaeolimnology, this chapter focuses on 14C dating, and its associated errors and the calibration of 14C ages to calibrated 14C ages. Calibration is an essential step before constructing age-depth models, There are several approaches to establishing age-depth relationships – linear interpolation, polynomial regression, splines, mixed-effect models, and Bayesian age-depth modelling involving chronological ordering or wiggle-matching. The critical question of model selection is discussed and future developments are outlined, along with details of available software.

Keywords

Age-depth modelling Bayesian approaches Calibration Interpolation Mixed-effects models Monte Carlo simulations Polynomials Radiocarbon dates Splines Wiggle matching 

References

  1. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203Google Scholar
  2. Bennett KD (1983) Devensian late-glacial and Flandrian vegetational history at Hockham Mere, Norfolk, England. I. Pollen percentages and concentrations. New Phytol 95:457–487CrossRefGoogle Scholar
  3. Bennett KD (1994) Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4:337–348CrossRefGoogle Scholar
  4. Bennett KD, Fuller JL (2002) Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. The Holocene 12:421–429CrossRefGoogle Scholar
  5. Birks HJB (2012a) Chapter 2: Overview of numerical methods in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, DordrechtGoogle Scholar
  6. Birks HJB (2012b) Chapter 11: Stratigraphical data analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, DordrechtGoogle Scholar
  7. Birks HJB, Jones VJ (2012) Chapter 3: Data-sets. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, DordrechtGoogle Scholar
  8. Björck S, Wohlfarth B (2001) 14C chronostratigraphic techniques in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 205–245Google Scholar
  9. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  10. Blaauw M (2011) Out of tune: the dangers of aligning proxy archives. Quat Sci Rev. doi:10.1016/j.quascirev.2010.11.012
  11. Blaauw M, Christen JA (2005) Radiocarbon peat chronologies and environmental change. Appl Stat 54:805–816CrossRefGoogle Scholar
  12. Blaauw M, van Geel B, Mauquoy D, van der Plicht J (2004) Radiocarbon wiggle-match dating of peat deposits: advantages and limitations. J Quat Sci 19:177–181CrossRefGoogle Scholar
  13. Blaauw M, Christen JA, Guilderson TP, Reimer PJ, Brown TA (2005) The problems of radiocarbon dating. Science 308:1551–1553CrossRefGoogle Scholar
  14. Blaauw M, Bakker R, Christen JA, Hall VA, van der Plicht J (2007a) A Bayesian framework for age-modelling of radiocarbon-dated peat deposits: case studies from the Netherlands. Radiocarbon 49:357–367Google Scholar
  15. Blaauw M, Christen JA, Mauquoy D, van der Plicht J, Bennett KD (2007b) Testing the timing of radiocarbon-dated events between proxy archives. The Holocene 17:283–288CrossRefGoogle Scholar
  16. Blaauw M, Wohlfarth B, Christen JA, Ampel L, Veres D, Hughen KA, Preusser F, Svensson A (2010) Were last glacial events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies. J Quat Sci 25:387–394CrossRefGoogle Scholar
  17. Blockley SPE, Blaauw M, Bronk Ramsey C, van der Plicht J (2007) Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quat Sci Rev 26:1915–1926CrossRefGoogle Scholar
  18. Boaretto E, Bryant C, Carmi I, Cook G, Gulliksen S, Harkness D, Heinemeier J, McClure J, McGee E, Naysmith P, Possnert G, Scott M, van der Plicht H, van Strydonck M (2002) Summary findings of the Fourth International Radiocarbon Intercomparison (FIRI) (1998–2001). J Quat Sci 17:633–637CrossRefGoogle Scholar
  19. Bowman S (1990) Interpreting the past: radiocarbon dating. University of California Press, BerkeleyGoogle Scholar
  20. Bronk Ramsey C (2007) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  21. Bronk Ramsey C (2009) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51:1023–1045Google Scholar
  22. Buck CE, Millard AR (eds) (2004) Tools for constructing chronologies: crossing disciplinary boundaries. Springer, LondonGoogle Scholar
  23. Buck CE, Cavanagh WG, Litton CD (1996) Bayesian approach to interpreting archaeological data. Wiley, ChichesterGoogle Scholar
  24. Buck CE, Christen JA, James GN (1999) BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeol 7. http://intarch.ac.uk/journal/issue7/buck_toc.html
  25. Burr GS (2007) Radiocarbon dating: causes of temporal variations. Encyclopedia of Quaternary Science. Elsevier, Oxford, pp 2931–2941Google Scholar
  26. Campbell ID (1996) Power function for interpolating dates in recent sediment. J Paleolimnol 15:107–110CrossRefGoogle Scholar
  27. Christen JA (1994a) Bayesian interpretation of radiocarbon results. Unpublished PhD thesis, University of NottinghamGoogle Scholar
  28. Christen JA (1994b) Summarizing a set of radiocarbon determinations: a robust approach. Appl Stat 43:489–503Google Scholar
  29. Christen JA, Pérez S (2009) A new robust statistical model for radiocarbon data. Radiocarbon 51:1047–1059Google Scholar
  30. Clymo RS (1984) The limits to peat growth. Philos Trans R Soc Lond B 303:605–654CrossRefGoogle Scholar
  31. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Elias SA (ed) (2007) Encyclopedia of quaternary science. Elsevier, OxfordGoogle Scholar
  33. Harkness DD, Miller BF, Tipping RM (1997) NERC radiocarbon measurements 1977–1988. Quat Sci Rev 16:925–927CrossRefGoogle Scholar
  34. Haslett J, Parnell A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. Appl Stat 57:399–418CrossRefGoogle Scholar
  35. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New YorkGoogle Scholar
  36. Heegaard E (2002) The outer border and central border for species-environmental relationships estimated by non-parametric generalised additive models. Ecol Model 157:131–139CrossRefGoogle Scholar
  37. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15:612–618CrossRefGoogle Scholar
  38. Hua Q, Barbetti M (2004) Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298Google Scholar
  39. Ibbetson H (in prep)The environmental history of a high South Pennine landscape: 1284 A.D. to present. PhD thesis to be submitted, Queen’s University BelfastGoogle Scholar
  40. International Study Group (1982) An inter-laboratory comparison of radiocarbon measurements in tree rings. Nature 298:619–623CrossRefGoogle Scholar
  41. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108CrossRefGoogle Scholar
  42. Jones VJ, Stevenson AC, Battarbee RW (1989) Acidification of lakes in Galloway, southwest Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J Ecol 77:1–23CrossRefGoogle Scholar
  43. Kilian MR, van der Plicht J, van Geel B (1995) Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quat Sci Rev 14:959–966CrossRefGoogle Scholar
  44. Kilian MR, van Geel B, van der Plicht J (2000) 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quat Sci Rev 19:1011–1033CrossRefGoogle Scholar
  45. King J, Peck J (2001) Use of paleomagnetism in studies of lake sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol, vol 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 371–389Google Scholar
  46. Kleijnen JPC (1974) Statistical techniques in simulation. Part I. Dekker, New YorkGoogle Scholar
  47. Madsen AT, Murray AS, Andersen TJ, Pejrup M (2007) Optical dating of young tidal sediments in the Danish Wadden Sea. Quat Geochronol 2:89–94CrossRefGoogle Scholar
  48. Maher LJ (1972) Absolute pollen diagram of Redrock Lake, Boulder County, Colorado. Quat Res 2:531–553CrossRefGoogle Scholar
  49. Maher LJ, Heiri O, Lotter AF (2012) Chapter 6: Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: data handling and numerical techniques. Springer, DordrechtGoogle Scholar
  50. McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 southern hemisphere calibration 0–11.0 cal kyr BP. Radiocarbon 46:1087–1092Google Scholar
  51. Mook WG (1986) Recommendations/resolutions adopted by the 12th International Radiocarbon Conference. Radiocarbon 28:799Google Scholar
  52. Newman WM, Sproull RF (1981) Principles of interactive computer graphics, 2nd edn. McGraw-Hill, SingaporeGoogle Scholar
  53. Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1872–1885CrossRefGoogle Scholar
  54. Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford Science, OxfordGoogle Scholar
  55. Pilcher JR (1991) Radiocarbon dating for the Quaternary scientist. Quat Proc 1:27–33Google Scholar
  56. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  57. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  58. Scott EM (2007) Radiocarbon dating: sources of error. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Oxford, pp 2918–2923CrossRefGoogle Scholar
  59. Stevenson AC, Jones VJ, Battarbee RW (1990) The cause of peat erosion: a palaeolimnological approach. New Phytol 114:727–735CrossRefGoogle Scholar
  60. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  61. Telford RJ, Heegaard E, Birks HJB (2004a) All age-depth models are wrong: but how badly? Quat Sci Rev 23:1–5CrossRefGoogle Scholar
  62. Telford RJ, Heegaard E, Birks HJB (2004b) The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14:296–298CrossRefGoogle Scholar
  63. Townsend PD, Parish R, Rowlands AP (2002) A new interpretation of depth-age profiles. Radiat Prot Dosimetry 101:315–319CrossRefGoogle Scholar
  64. Twyman RM (2007) Geomagnetic excursions and secular variations. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Oxford, pp 717–720CrossRefGoogle Scholar
  65. Walker M (2005) Quaternary dating methods. Wiley, ChichesterGoogle Scholar
  66. Wohlfarth B, Blaauw M, Davies SM, Andersson M, Wastegård S, Hormes A, Possnert G (2006) Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probability methods. J Quat Sci 21:321–334CrossRefGoogle Scholar
  67. Wohlfarth B, Veres D, Ampel L, Lacourse T, Blaauw M, Preusser F, Andrieu-Ponel V, Kéravis D, Lallier-Vergès E, Björck S, Davies SM, de Beaulieu J-L, Risberg J, Hormes A, Kasper HU, Possnert G, Reille M, Thouveny N, Zander A (2008) Rapid ecosystem response to abrupt climate changes during the last glacial period in Western Europe, 40–16 kyr BP. Geology 36:407–410CrossRefGoogle Scholar
  68. Wood SN (2006) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  69. Yeloff D, Bennett KD, Blaauw M, Mauquoy D, Sillasoo Ü, van der Plicht J, van Geel B (2006) High precision C-14 dating of Holocene peat deposits: a comparison of Bayesian calibration and wiggle-matching approaches. Quat Geochronol 1:222–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Geography, Archaeology & PalaeoecologyQueen’s University BelfastBelfastUK
  2. 2.Department of Biology and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  3. 3.Norwegian Forest and Landscape InstituteFanaNorway

Personalised recommendations