The March Towards the Quantitative Analysis of Palaeolimnological Data

  • John P. Smol
  • H. John B. Birks
  • André F. Lotter
  • Steve Juggins
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 5)


We outline the aims of palaeolimnology and describe the major types of palaeolimnological data. The distinction between biological data derived from stratigraphical studies of cores and modern surface-sediment samples with environmental data is discussed. A brief history of the development of quantitative palaeolimnology is presented, starting with early applications of principal component analysis in 1975. Major developments occurred in the late 1980s, thanks to the work of Cajo ter Braak and others. The structure of the book in terms of four parts is explained. Part I is introductory and presents an overview of numerical methods and of the data-sets used. Part II presents numerical approaches appropriate to the analysis of modern and stratigraphical palaeolimnological data. Part III considers numerical techniques that are only applicable to stratigraphical data, and Part IV presents three case-studies and concludes with a discussion of future challenges.


Calibration Calibration functions Data-sets Numerical Palaeolimnology Temporal scales Transfer functions 


  1. Battarbee RW, Smol JP, Meriläinen J (1986) Diatoms as indicators of pH: a historical review. In: Smol JP, Battarbee RW, Davis RB, Meriläinen J (eds) Diatoms and lake acidity. Junk Publications, Dordrecht, pp 5–14CrossRefGoogle Scholar
  2. Battarbee RW, Gasse F, Stickley CE (eds) (2004) Past climate variability through Europe and Africa. Springer, DordrechtGoogle Scholar
  3. Beales PW (1976) Palaeolimnological Studies of a Shropshire Mere. PhD thesis, University of CambridgeGoogle Scholar
  4. Bennett JR, Cumming BF, Ginn BK, Smol JP (2010) Broad-scale environmental response and niche conservatism in lacustrine diatom communities. Global Ecol Biogeogr 19:724–732Google Scholar
  5. Binford MW (1982) Ecological history of Lake Valencia, Venezuela: interpretation of animal microfossils and some chemical, physical, and geological factors. Ecol Monogr 52:307–333CrossRefGoogle Scholar
  6. Birks HH (1973) Modern macrofossil assemblages in lake sediments in Minnesota. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 173–190Google Scholar
  7. Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaebot 15: 235–251CrossRefGoogle Scholar
  8. Birks HJB (1985) Recent and possible future mathematical developments in quantitative palaeoecology. Palaeogeogr, Palaeoclim, Palaeoecol 50:107–147CrossRefGoogle Scholar
  9. Birks HJB (1987) Multivariate analysis of stratigraphic data in geology: a review. Chemometrics Intell Lab Sys 2:109–126CrossRefGoogle Scholar
  10. Birks HJB (1998) Numerical tools in palaeolimnology – progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  11. Birks HJB (2010) Numerical methods for the analysis of diatom assemblage data. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 23–54Google Scholar
  12. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic, LondonGoogle Scholar
  13. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Philos Trans R Soc Lond B 327:263–278CrossRefGoogle Scholar
  14. Birks HJB, Heiri O, Seppä H, Bjune AE (2010) Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. Open Ecol J 3:68–110CrossRefGoogle Scholar
  15. Brown AG (1985) Traditional and multivariate techniques applied to the interpretations of floodplain sediment grain size variations. Earth Surf Processes Landf 10:281–291CrossRefGoogle Scholar
  16. Brugam RB (1980) Postglacial diatom stratigraphy of Kirchner Marsh, Minnesota. Quat Res 13:133–146CrossRefGoogle Scholar
  17. Bruno MG, Lowe RL (1980) Differences in the distribution of some bog diatoms: a cluster analysis. Am Midland Nat 104:70–79CrossRefGoogle Scholar
  18. Carney HJ (1982) Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63:1814–1826CrossRefGoogle Scholar
  19. Cohen AS (2003) Palaeolimnology: the history and evolution of lake systems. Oxford University Press, OxfordGoogle Scholar
  20. Coolen MJL, Gibson JAE (2009) Ancient DNA in lake sediment records. PAGES News 17: 104–106Google Scholar
  21. Davis RB, Norton SA (1978) Paleolimnologic studies of human impact on lakes in the United States, with emphasis on recent research in New England. Pol Arch Hydrobiol 25:99–115Google Scholar
  22. Dean WE, Gorham E (1976a) Classification of Minnesota lakes by Q- and R-mode factor analysis of sediment mineralogy and geochemistry. In: Merriam DF (ed) Quantitative techniques for the analysis of sediments. Pergamon Press, Oxford, pp 61–71Google Scholar
  23. Dean WE, Gorham E (1976b) Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol Oceanogr 21:259–284CrossRefGoogle Scholar
  24. Elner JK, Happey-Wood CM (1980) The history of two linked but contrasting lakes in North Wales from a study of pollen, diatoms, and chemistry in sediment cores. J Ecol 68:95–121CrossRefGoogle Scholar
  25. Everitt BS (2002) The Cambridge dictionary of statistics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  26. Francus P (ed) (2004) Image analysis, sediments and paleoenvironments. Springer, DordrechtGoogle Scholar
  27. Francus P, Lamb H, Nakagawa T, Marshall M, Brown E, Suigetsu 2006 project members (2009) The potential of high-resolution X-ray fluorescence core scanning: applications in paleolimnology. PAGES News 17:93–95Google Scholar
  28. Grosjean M, von Gunten L, Trachsel M, Kamenik C (2009) Calibration-in-time: transforming biogeochemical lake sediment proxies into quantitative climate variable. PAGES News 17:108–110Google Scholar
  29. Heiri O, Wooller MJ, van Hardenbroek M, Wang YV (2009) Stable isotopes in chitinous fossils of aquatic vertebrates. PAGES News 17:100–102Google Scholar
  30. Hofmann W (1978) Analysis of animal microfossils from the Segerberger See (FRG). Archiv für Hydrobiologie 82:316–346Google Scholar
  31. Jatkar SA, Rushforth SR, Brotherson JD (1979) Diatom floristics and succession in a peat bog near Lily Lake, Summit County, Utah. Great Basin Nat 39:15–43Google Scholar
  32. Kaesler RL (1966) Quantitative re-evaluation of ecology and distribution of recent foraminfera and ostracoda of Todos Santos Bay, Baja California, Mexico. University of Kansas Paleontological Contributions 10, pp 1–50Google Scholar
  33. Last WM, Smol JP (eds) (2001a) Tracking environmental change using lake sediments, vol 1, Basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, DordrechtGoogle Scholar
  34. Last WM, Smol JP (eds) (2001b) Tracking environmental change using lake sediments, vol 2, Physical and geochemical methods. Kluwer Academic Publishers, DordrechtGoogle Scholar
  35. Leng MJ (ed) (2006) Isotopes in palaeoenvironmental research. Springer, DordrechtGoogle Scholar
  36. Lotter AF (2003) Multi-proxy climatic reconstructions. In: Mackay AW, Battarbee RW, Birks HJB, Oldfield F (eds) Global change in the holocene. Arnold, London, pp 373–383Google Scholar
  37. Maddocks RF (1966) Distribution patterns of living and subfossil podocopid ostracods in the Nosy Be’ area, Northern Madagascar. University of Kansas Paleontological Contributions 12, pp 1–72Google Scholar
  38. Maher LJ (1972a) Nomograms for computing 0.95 confidence limits of pollen data. Rev Palaeobot Palynol 13:85–93CrossRefGoogle Scholar
  39. Maher LJ (1972b) Absolute pollen diagram of Redrock Lake, Boulder County, Colorado. Quat Res 2:531–553CrossRefGoogle Scholar
  40. Maher LJ (1980) The confidence limit is a necessary statistic for relative and absolute pollen data. Proc IV Int Palynol Conf 3:152–162Google Scholar
  41. Maher LJ (1981) Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev Palaeobot Palynol 32:153–191CrossRefGoogle Scholar
  42. Maher LJ, Heiri O, Lotter AF (2012) Chapter 6 Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques, vol 5. Springer, DordrechtGoogle Scholar
  43. Norton SA, Davis RB, Brakke DF (1981) Responses of northern New England lakes to atmospheric inputs of acids and heavy metals. Report to Land and Water Resources Center, University of MaineGoogle Scholar
  44. Peglar SM, Fritz SC, Alapieti T, Saarnisto M, Birks HJB (1984) Composition and formation of laminated sediments in Diss Mere, Norfolk, England. Boreas 13:13–28CrossRefGoogle Scholar
  45. Pennington W, Sackin MJ (1975) An application of principal components analysis to the zonation of two Late-Devensian profiles. New Phytol 75:419–453CrossRefGoogle Scholar
  46. Pienitz R, Douglas MSV, Smol JP (eds) (2004) Long-term environmental change in arctic and antarctic lakes. Springer, DordrechtGoogle Scholar
  47. Pienitz R, Lotter AF, Newman L, Kiefer T (eds) (2009) Advances in paleolimnology. PAGES News 17:89–136Google Scholar
  48. Rosén P, Dåbakk E, Renberg I, Nilsson M, Hall RA (2000) Near-infrared spectroscopy (NIRS): a new tool for inferring past climatic changes from lake sediments. Holocene 10:161–166CrossRefGoogle Scholar
  49. Rosén P, Vogel H, Cunningham L, Reuss N, Conley DJ, Persson P (2010) Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. J Paleolimnol 43:247–259CrossRefGoogle Scholar
  50. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-induced shifts in planktonic diatoms from North American and European lakes. Global Change Biol 14: 2740–2754Google Scholar
  51. Sergeeva LV (1983) Trace element associations as indicators of sediment accumulation in lakes. Hydrobiologia 103:81–84CrossRefGoogle Scholar
  52. Smol JP (2008) Pollution of lakes and rivers: a palaeoenvironmental perspective, 2nd edn. Blackwell Publishing, OxfordGoogle Scholar
  53. Smol JP, Birks HJB, Last WM (eds) (2001a) Tracking environmental change using lake sediments, vol 3, Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, DordrechtGoogle Scholar
  54. Smol JP, Birks HJB, Last WM (eds) (2001b) Tracking environmental change using lake sediments, vol 4, Zoological indicators. Kluwer Academic Publishers, DordrechtGoogle Scholar
  55. Smol JP, Wolfe AP, Birks HJB et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402CrossRefGoogle Scholar
  56. Sweetman JN, Smol JP (2006) Reconstructing past shifts in fish populations using subfossil Chaoborus (Diptera: Chaoboridae) remains. Quat Sci Rev 25:2013–2023CrossRefGoogle Scholar
  57. Synerholm CC (1979) The chydorid cladocera from surface lake sediments in Minnesota and North Dakota. Archiv für Hydrobiologie 86:137–151Google Scholar
  58. Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015CrossRefGoogle Scholar
  59. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  60. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  61. ter Braak CJF, van Dam H (1989) Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223CrossRefGoogle Scholar
  62. Uutala AJ (1990) Chaoborus (Diptera: Chaoboridae) mandibles – paleolimnological indicators of the historical status of fish populations in acid-sensitive lakes. J Paleolimnol 4:139–151CrossRefGoogle Scholar
  63. Vanormelingen P, Verleyen E, Vyverman W (2008) The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiv Cons 17:393–405CrossRefGoogle Scholar
  64. Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, Hodgson DA, Mann DG, Juggins S, van de Vijver B, Jones V, Flower R, Roberts D, Chepurnov VA, Kilroy C, Vanormelingen P, de Wever A (2007) Historical processes constrain patterns in global diatom diversity. Ecology 88:1924–1931CrossRefGoogle Scholar
  65. Weijers JWH, Blaga CI, Werne JP, Sinninghe Damsté JS (2009) Microbial membrane lipids in lake sediments as a paleothermometer. PAGES News 17:102–104Google Scholar
  66. Whiteside MC (1970) Danish chydorid cladocera: modern ecology and core studies. Ecol Monogr 40:79–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • John P. Smol
    • 1
  • H. John B. Birks
    • 2
    • 3
    • 4
  • André F. Lotter
    • 5
  • Steve Juggins
    • 6
  1. 1.Paleoecological Environmental Assessment and Research Lab (PEARL), Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Department of Biology and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK
  4. 4.School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  5. 5.Laboratory of Palaeobotany and Palynology, Department of BiologyUniversity of UtrechtUtrechtThe Netherlands
  6. 6.School of Geography, Politics & SociologyUniversity of NewcastleNewcastle-upon-TyneUK

Personalised recommendations