Abstract

The present work is focused on adaptive feed-forward control to low-frequency interior noise. The basic system in which the noise is present is the air filled interior. To establish a control concept, it is important to know what field variables can be used to describe the transfer behavior of this basic system or to receive information about the systems state. For this reason, basic acoustic field variables such as the acoustic pressure, the acoustic velocity, and the change in density are introduced in this chapter. It will be shown that interior noise fields are described by the wave equation or, in case of harmonic excitation, by the Helmholtz equation considering the associated boundary conditions. These partial differential equations will be derived from basic field equations that are used to express the balance of linear momentum, the conservation of mass as well as the thermodynamic state. To give an introduction into the nature of standing waves, this chapter also contains analytical solutions for one-dimensional waveguides. However, this chapter is far away from being a comprehensive summary of (engineering) acoustics that is in great detail presented e.g. in (Baranek in Acoustics, McGraw-Hill, New York, 1954a), (Heckl and Müller in Taschenbuch der Technischen Akustik, Springer, Berlin, 1995), (Henn et al. in Ingenieurakustik, Vieweg, Wiesbaden, 1984), (Kuttfurff in Akustik: Eine Einführung, Hirzel, Stuttgart, 2004), (Morese and Ingard in Flügge (ed.) Encyclopedia of physics XI/1, acoustics 1, Springer, Berlin, 1961), (Morse and Ingard in Theoretical acoustics, McGraw-Hill, New York, 1968), (Möser in Technische Akustik, Springer, Berlin, 2005), (Skudrzyk in The foundations of acoustics, basic mathematics and basic acoustics, Springer, Wien, 1971), and in (Fahy in Foundations of engineering acoustics, Academic Press, Amsterdam, 2003). A compact summary of acoustics is given in (DEGA in Akustische Wellen und Felder; DEGA Deutsche Gesellschaft für Akustik e.V. http://www.dega-akustik.de/publikationen/online-publikationen. Cited 05 May 2010, 2006).

Keywords

Sound Pressure Acoustic Pressure Sound Field Acoustic Velocity Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baranek LL (1954a) Acoustics. McGraw-Hill, New York Google Scholar
  2. Bathe KJ (1996) Finite element procedures. Prentice Hall, London Google Scholar
  3. DEGA (2006) Akustische Wellen und Felder; DEGA Deutsche Gesellschaft für Akustik e.V. http://www.dega-akustik.de/publikationen/online-publikationen. Cited 05 May 2010
  4. DIN 1314 (1990) Referenzzustand, Normzustand, Normvolumen; Begriffe und Werte. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  5. EN ISO 10534-1 (2001) Akustik—Bestimmung des Schallabsorptionsgrades und der Impedanz in Impedanzrohren Teil 1: Verfahren mit Stehwellenverhältnis (ISO 10534-1:1996) Deutsche Fassung EN ISO 10534-1:2001. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  6. EN ISO 10534-2 (2001) Akustik—Bestimmung des Schallabsorptionsgrades und der Impedanz in Impedanzrohren Teil 2: Verfahren mit Übertragungsfunktion (ISO 10534-2:1998). Deutsche Fassung EN ISO 10534-2:2001. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  7. Fahy F (1989) Sound intensity. Elsevier, London Google Scholar
  8. Fahy F (2003) Foundations of engineering acoustics. Academic Press, Amsterdam Google Scholar
  9. Fahy F, Gardonio P (2007) Sound and structural vibration. Elsevier, Amsterdam Google Scholar
  10. Heckl M, Müller H (1995) Taschenbuch der Technischen Akustik. Springer, Berlin Google Scholar
  11. Henn H, Sinambary GR, Fallen M (1984) Ingenieurakustik. Vieweg, Wiesbaden Google Scholar
  12. Kuttruff H (2004) Akustik: Eine Einführung. Hirzel, Stuttgart Google Scholar
  13. Morese PM, Ingard KU (1961) Linear acoustic theory. In: Flügge S (ed) Encyclopedia of physics XI/1. Acoustics 1, 1st edn. Springer, Berlin Google Scholar
  14. Morese PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New York Google Scholar
  15. Möser M (2005) Technische Akustik. Springer, Berlin Google Scholar
  16. Möser M (2010) Messtechnik der Akustik. Springer, Heidelberg Google Scholar
  17. Müller I (1994) Grundzüge der Thermodynamik. Springer, Berlin Google Scholar
  18. Skudrzyk E (1971) The foundations of acoustics, basic mathematics and basic acoustics. Springer, Wien Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, MechatronicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations