Structural Studies of the Functional Complexes of the 50S and 70S Ribosome, a Major Antibiotic Target

  • Thomas A. Steitz
  • Gregor Blaha
  • C. Axel Innis
  • Robin Evans Stanley
  • David Bulkley
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Our crystal structure of the Haloarcula marismortui (H.ma.) 50S ribosomal subunit and its complexes with substrates and antibiotics have illuminated the mechanism of peptide bond formation and its inhibition by antibiotics. Our structures of the Thermus thermophilus (T.th.) 70S ribosome complexed with tRNAs, protein factor EF-P or antibiotics have also provided insights into their mechanisms of action. We conclude that the CCA ends of the A- and P-site tRNAs bind to the 70S ribosome as the CCA fragments bind to the 50S subunit; macrolide antibiotics bind to the T.th. 70S ribosome as they bind to the H.ma. 50S subunit; EF-P binds to the 70S ribosome adjacent to and interacting with a P-site tRNA, and cryoEM maps of a 70S ribosome bound to a peptidyl-tRNA containing an arresting sequence shows an extended polypeptide interacting with the tunnel wall.

References

  1. 1.
    Allen GS, Zavialov A, Gursky R, et al (2005) The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–712CrossRefGoogle Scholar
  2. 2.
    An G, Glick BR, Friesen JD et al (1980) Identification and quantitation of elongation factor EF-P in Escherichia coli cell-free extracts. Can J Biochem 58:1312–1314CrossRefGoogle Scholar
  3. 3.
    Aoki H, Dekany K, Adams SL et al (1997) The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J Biol Chem 272:32254–32259CrossRefGoogle Scholar
  4. 4.
    Aoki H, Xu J, Emili A et al (2008) Interactions of elongation factor EF-P with the Escherichia coli ribosome. FEBS J 275:671–681CrossRefGoogle Scholar
  5. 5.
    Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Pioletti M, Bartels H, Gluehmann M, Hansen H, Auerbach T et al (2001) High-resolution structures of ribosomal subunits: initiation, inhibition, and conformational variability. Cold Spring Harb Symp Quant Biol 66:43–56CrossRefGoogle Scholar
  6. 6.
    Ban N, Freeborn B, Nissen P et al (1998) A 9  Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:1105–1115CrossRefGoogle Scholar
  7. 7.
    Ban N, Nissen P, Hansen J et al (1999) Placement of protein and RNA structures into a 5  Å resolution map of the 50S ribosomal subunit. Nature 400:841–847CrossRefADSGoogle Scholar
  8. 8.
    Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4  Å resolution. Science 289:905–920CrossRefADSGoogle Scholar
  9. 9.
    Barta A, Steiner G, Brosius J et al (1984) Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc Natl Acad Sci USA 81:3607–3611CrossRefADSGoogle Scholar
  10. 10.
    Beringer M (2001) Modulating the activity of the peptidyl transferase center of the ribosome. RNA 14:795–801CrossRefGoogle Scholar
  11. 11.
    Berisio R, Harms J, Schluenzen F et al (2003) Structural insights into the antibiotic action of telithromycin against resistant mutants. J Bacteriol 185(14):4276–4279CrossRefGoogle Scholar
  12. 12.
    Blaha G, Gurel G, Schroeder SJ et al (2008) rRNA mutations far from antibiotic binding sites can make ribosomes drug-resistant. J Mol Biol 379:505–519CrossRefGoogle Scholar
  13. 13.
    Blaha G, Stanley RE, Steitz TA (2009) Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325: 966–970CrossRefGoogle Scholar
  14. 14.
    Borovinskaya MA, Shoji S, Fredrick K, Cate JH (2008) Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14(8): 1590–1599CrossRefGoogle Scholar
  15. 15.
    Bulkley D, Innis CA, Blaha G, Steitz TA (2010) Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci USA 107(40):17158–17163CrossRefADSGoogle Scholar
  16. 16.
    Carter AP, Clemons WM, Bordensen DE et al (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348CrossRefADSGoogle Scholar
  17. 17.
    Cole JR, Olsson CL, Hershey JW, Grunberg-Manago M, Nomura M (1987) Feedback regulation of rRNA synthesis in Escherichia coli. Requirement for initiation factor IF2. J Mol Biol 198:383–392CrossRefGoogle Scholar
  18. 18.
    Cruz-Vera LR and Yanofsky C (2008) Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression. J Bacteriol 190: 4791–4797CrossRefGoogle Scholar
  19. 19.
    Dorner S, Panuschka C, Schmid W, Barta A (2003) Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2’-OH to activity. Nucleic Acids Res 31:6536–6542CrossRefGoogle Scholar
  20. 20.
    Franceschi F, Weistein S, Evers U et al (1993) Towards atomic resolution of prokaryotic ribosomes: crystallographic, genetic and biochemical studies. In: Nierhaus KH, Franceschi F, Subramanian AR, Erdman VA, Wittmann-Liebold B (eds) The translational apparatus. Plenum Press, New York, pp 397–410CrossRefGoogle Scholar
  21. 21.
    Gong F, Yanofsky C (2002) Instruction of translating ribosome by nascent peptide. Science 297:1864–1867CrossRefGoogle Scholar
  22. 22.
    Hansen JL, Ippolito JA, Ban N et al (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117–128CrossRefGoogle Scholar
  23. 23.
    Hansen JL, Moore PB, Steitz TA (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol 330:1061–1075CrossRefGoogle Scholar
  24. 24.
    Harms J, Schluenzen F, Zarivach R et al (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–688CrossRefGoogle Scholar
  25. 25.
    Ito K, Chiba S, Pogliano K (2010) Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun 393:1–5CrossRefGoogle Scholar
  26. 26.
    Klein DJ, Schmeing TM, Moore PB, Steitz TA (2001) The Kink-turn: a new RNA secondary structure motif. EMBO J 20:4214–4221CrossRefGoogle Scholar
  27. 27.
    Klein DJ, Moore PB, Steitz TA (2004) The roles of ribosomal proteins in the structure, assembly and evolution of the large ribosomal subunit. J Mol Biol 340:141–177CrossRefGoogle Scholar
  28. 28.
    Korostolev A, Trakhanov SK, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1066–1077Google Scholar
  29. 29.
    Lovett PS and Rogers EJ (1996) Ribosome regulation by the nascent peptide. Microbiol Rev 60:366–385Google Scholar
  30. 30.
    Mozad D, Noller HF (1987) Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the pepticyl transferase region of 23S ribosomal RNA. Biochimie 69(8):879–884CrossRefADSGoogle Scholar
  31. 31.
    Nissen P, Hansen J, Ban N et al (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930CrossRefADSGoogle Scholar
  32. 32.
    Nissen P, Ippolito JA, Ban N et al (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903CrossRefADSGoogle Scholar
  33. 33.
    Ogle JM, Brodersen DE, Clemons WM Jr et al (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902CrossRefADSGoogle Scholar
  34. 34.
    Peske F, Savelsbergh A, Katunin VI et al (2004) Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J Mol Biol 343:1183–1194CrossRefGoogle Scholar
  35. 35.
    Ramu H, Mankin A, Vazquez-Laslop N (2009) Programmed drug-dependent ribosome stalling. Mol Microbiol 71:811–824CrossRefGoogle Scholar
  36. 36.
    Schluenzen F, Hansen HAS, Thygesen J et al (1995) A milestone in ribosomal crystallography: the construction of preliminary electron density maps at intermediate resolution. Biochem Cell Biol 73:739–749CrossRefGoogle Scholar
  37. 37.
    Schluenzen F, Zarivach R, Harms J et al (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase center in eubacteria. Nature 413:814–821CrossRefADSGoogle Scholar
  38. 38.
    Schlunzen F, Harms JM, Franceschi F, et al (2003) Structural basis for the antibiotic activity of ketolides and azalides. Structure 11(3):329–338CrossRefGoogle Scholar
  39. 39.
    Schmeing TM, Huang KS, Kitchen DE et al (2005) Structural insights into the roles of water and the 2’ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20:437–448CrossRefGoogle Scholar
  40. 40.
    Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438:520–524CrossRefADSGoogle Scholar
  41. 41.
    Schmeing TM, Seila AC, Hansen JL et al (2002) A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat Struct Biol 9:225–230Google Scholar
  42. 42.
    Schuwirth BS et al (2005) Structures of the bacterial ribosome at 3.5  Å resolution. Science 310:827–834CrossRefADSGoogle Scholar
  43. 43.
    Seidelt B, Innis CA, Wilson DN et al (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326:1412–1415CrossRefADSGoogle Scholar
  44. 44.
    Selmer M et al (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942CrossRefADSGoogle Scholar
  45. 45.
    Shevack A, Gewitz HS, Hennemann B et al (1985) Characterization and crystallization of ribosomal particles from Haloarcula marismortui. FEBS Lett 184:68–71CrossRefGoogle Scholar
  46. 46.
    Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755CrossRefGoogle Scholar
  47. 47.
    Shoji S, Walker SE, Fredrick K (2009) Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem Biol 4:93–107CrossRefGoogle Scholar
  48. 48.
    Simonetti A, Marzi S, Jenner L et al (2009) A structural view of translation initiation in bacteria. Cell Mol Life Sci 66:423–436CrossRefGoogle Scholar
  49. 49.
    Simonetti A, Marzi S, Myasnikov AG et al (2008) Structure of the 30S translation initiation complex. Nature 455:416–420CrossRefADSGoogle Scholar
  50. 50.
    Simonovic M, Steitz TA (2008) Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit. Proc Natl Acad Sci USA 105:500–505CrossRefADSGoogle Scholar
  51. 51.
    Stanley RE, Blaha G, Grodzicki RL et al (2010) The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 17:289–293CrossRefGoogle Scholar
  52. 52.
    Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9:243–253CrossRefGoogle Scholar
  53. 53.
    Szaflarski W, Vesper O, Teraoka Y et al (2008) New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J Mol Biol 380:193–205CrossRefGoogle Scholar
  54. 54.
    Tenson T, Ehrenberg M (2002) Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591–594CrossRefGoogle Scholar
  55. 55.
    Tu D, Blaha G, Moore PB, Steitz TA (2005) Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted. Extremophiles 9:427–435CrossRefGoogle Scholar
  56. 56.
    Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–270CrossRefGoogle Scholar
  57. 57.
    van Bohlen K, Makowski I, Hansen HAS et al (1991) Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marisumortui diffracting to 3  Å resolution. J Mol Biol 222:11–15CrossRefGoogle Scholar
  58. 58.
    Vazquez-Laslop N, Thum C, Mankin AS (2008) Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30:190–202CrossRefGoogle Scholar
  59. 59.
    Voorhees RM, Weixlbaumer A, Loakes D et al (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16:528–533CrossRefGoogle Scholar
  60. 60.
    Weinger JS, Parnell KM, Dorner S et al (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11:1101–1106CrossRefGoogle Scholar
  61. 61.
    Wilson DN (2009) The A-Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol 44:393–433CrossRefGoogle Scholar
  62. 62.
    Wimberly BT, Brodersen DE, Clemons WM Jr et al (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339CrossRefADSGoogle Scholar
  63. 63.
    Wittmann-Liebold B (1986) Ribosomal proteins: their structure and evolution. In: Hardesty B, Karmer G (eds) Structure, function and genetics of ribosome. Springer-Verla, New York, pp 324–361Google Scholar
  64. 64.
    Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, symergism and cellular regulation. Annu Rev Biochem 74:649–679Google Scholar
  65. 65.
    Yonath A, Mussig J, Tesche B et al (1980) Crystallization of the large ribosomal subunits from Bacillus stearothermophilus. Biochem Int 1:428–435Google Scholar
  66. 66.
    Yusupov MM, Yusupova GZ, Baucom A et al (2001) Crystal structure of the ribosome at 5.5  Å resolution. Science 292:883–8986CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Thomas A. Steitz
    • 1
    • 2
    • 3
  • Gregor Blaha
    • 1
  • C. Axel Innis
    • 1
  • Robin Evans Stanley
    • 1
    • 4
  • David Bulkley
    • 2
    • 3
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA
  2. 2.Department of ChemistryYale UniversityNew HavenUSA
  3. 3.Howard Hughes Medical InstituteNew HavenUSA
  4. 4.NIDDK, National Institutes of HealthBethesdaUSA

Personalised recommendations