LES modeling of the turbulent flow over an Ahmed car

  • O. Lehmkuhl
  • R. Borrell
  • C. D. Perez-Segarra
  • A. Oliva
  • R. Verstappen
Part of the ERCOFTAC Series book series (ERCO, volume 15)

Abstract

The Ahmed body car is a semi-rectangular vehicle with a rounded front part and a slant back. Flow over this generic body reproduce the basic fluid-dynamics features of real cars with a typical fastback geometry and its simplified topology allows easy comparisons between experimental and numerical works.

Keywords

Large Eddy Simulation High Reynolds Number Streamwise Velocity High Order Scheme Slant Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. R. Ahmed, G. Ramm, and G. Faltin. Salient features of the time-averaged ground vehicle wake. SAE Paper, (840300), 1984. Google Scholar
  2. 2.
    H. Lienhart and S. Becker. Flow and turbulent structure in the wake of a simplified car model. SAE Paper, (2003-01-0656), 2003. Google Scholar
  3. 3.
    S. Krajnović and L. Davidson. Flow around a simplified car, Part 1: Large eddy simulation. Journal of Fluids Engineering, 127:907–918, 2005. CrossRefGoogle Scholar
  4. 4.
    M. Minguez, R. Pasquetti, and E. Serre. High-order large-eddy simulation of flow over the Ahmed body car model. Physics of Fluids, 20, 2008. Google Scholar
  5. 5.
    O. Lehmkuhl, R. Borrell, C. D. Pérez-Segarra, J. Chiva, and A. Oliva. Direct numerical simulations and symmetry-preserving regularization simulations of the flow around a circular cylinder at Reynolds number 3900. In Turbulence, Heat and Mass Transfer 6, Rome, Italy, September 2009. Google Scholar
  6. 6.
    F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62:183–200, 1999. MATHCrossRefGoogle Scholar
  7. 7.
    R. Verstappen. When does eddy viscosity damp subfilter scales sufficiently? In Quality and Reliability of Large-Eddy Simulations II, Pisa, Italy, September 2009. Google Scholar
  8. 8.
    R. Verstappen. On restraining the production of small scales of motion in a turbulent channel flow. Computers and Fluids, 37(7):887–897, 2008. MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    F. N. Felten and T. S. Lund. Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow. Journal of Computational Physics, 215:465–484, 2006. MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    G. M. Fishpool and M. A. Leschziner. Stability for fractional-step schemes for the Navier-Stokes equations at high Reynolds number. Computers & Fluids, 38:1289–1298, 2009. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • O. Lehmkuhl
    • 1
  • R. Borrell
  • C. D. Perez-Segarra
  • A. Oliva
  • R. Verstappen
  1. 1.TermoFluids S.L.TerrassaSpain

Personalised recommendations