A multilevel method applied to the numerical simulation of two-dimensional incompressible flows past obstacles at high Reynolds number

Part of the ERCOFTAC Series book series (ERCO, volume 15)

Abstract

Numerical simulation of turbulent flows in complex geometries is one of the most investigated fields in computer science in the last decades. But even though the power of supercomputers has regularly increased for many years, it has been understood that the numerical simulation of realistic flows at high Reynolds number would require too many efforts in term of memory and CPU time if one discretizes directly the Navier-Stokes equation.

Keywords

Reynolds Number Computational Fluid Dynamics Large Eddy Simulation Direct Numerical Simulation High Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bouard, M. Coutanceau, The early stage of development of the wake behind an impulsively started cylinder for 40<Re<104, J. Fluid Mech., 101, (1980) 583–607. CrossRefGoogle Scholar
  2. 2.
    F. Bouchon, T. Dubois, A LES model based on the spectral decay of the kinetic energy, in Advances in Turbulence VIII, CIMNE, Barcelona (2000), 527–530. Google Scholar
  3. 3.
    F. Bouchon, T. Dubois, A model based on incremental scales applied to LES of turbulent channel flow, in Direct and Large Eddy Simulation IV, ERCOFTAC SERIES, Kluwer Academic Publishers (2001), 97–104. Google Scholar
  4. 4.
    F. Bouchon, T. Dubois, N. James, A second-order immersed boundary method for the numerical simulation of two-dimensional incompressible viscous flows past obstacles, to appear in Computational Fluid Dynamics 2010, Proceedings of ICCFD6, St-Petersbourg, Russia, (2010) Springer. Google Scholar
  5. 5.
    N. James, Méthodes multi-niveaux sur grilles décalées. Application à la simulation numérique d’écoulements autour d’obstacles., Thèse de l’Université Clermont-Ferrand 2, (2009). Google Scholar
  6. 6.
    M. Coutanceau, R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. Fluid Mech., 79, (1977) 231–256. CrossRefGoogle Scholar
  7. 7.
    F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8(12), (1965) 2182–2189. MATHCrossRefGoogle Scholar
  8. 8.
    N. Matsunaga, T. Yamamoto, Superconvergence of the Shortley-Weller approximation for Dirichlet problems, J. Comp. Appl. Math., 116 (2000) 263–273. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • François Bouchon
    • 1
  • Thierry Dubois
  • Nicolas James
  1. 1.Laboratoire de MathématiquesClermont Université, Université Blaise-PascalClermont-FerrandFrance

Personalised recommendations