Landslide Disasters: Seeking Causes – A Case Study from Uttarakhand, India

  • Martin Haigh
  • J. S. Rawat

Abstract

This study is about the fundamental causes and character of landslides in the Himalaya and similar mountain belts. In part, it is intended as a protest against the repetitive and misleading reports that so often follow each successive extreme rainfall event and consequent landslide swarm. The problem is that many of these.‘kneejerk’. reactions to a disaster do little more than support folklore or a particular political stance.

References

  1. Ayalew, L. and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65: 15-31.CrossRefGoogle Scholar
  2. Barbieri, G. and Cambuli, P. (2009). The weight of evidence: statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). 18th World IMACS/MODSIM Congress, Cairns, Australia 13-17 July 2009. Proceedings, pp 2659-2664. Available at: http://www.mssanz.org.au/modsim09/G3/barbieri.pdf (August 20, 2010).
  3. Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C. (2001). Natural and human- induced landsliding in the Garhwal Himalaya of northern India. Geomorphology, 40: 21-35.CrossRefGoogle Scholar
  4. Brown, C. and Leibovitch, L. (2010). Fractal Analysis. Sage, Thousand Oaks, CA.Google Scholar
  5. Bruijnzeel, L.A. and Bremmer, C.N. (1989). Highland-lowland interactions in the Ganges Brahmaputra river basin: A review of published literature. Kathmandu, Nepal, International Centre for Integrated Mountain Development (ICIMOD), Occasional Paper.Google Scholar
  6. Brunetti, M.T., Guzzetti, F. and Rossi, M. (2009). Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16: 179-188.CrossRefGoogle Scholar
  7. Carrara, A., Catalano, E., Reali, C. and Sorriso-Valvo, S. (1982). Computer assisted technologies for regional landslide evaluation. Studia Geomorphologica Carpatho- Balcanica, 15: 99-113.Google Scholar
  8. Champati Ray, P.K., Dimri, S., Lakhera, R.C. and Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2): 101-111.CrossRefGoogle Scholar
  9. Corominas, J., Copons, R., Vilaplana, J.M., Altimir, J. and Amigó, J. (2003). Integrated Landslide Susceptibility Analysis and hazard assessment in the Principality of Andorra. Natural Hazards, 30(3): 421-435.CrossRefGoogle Scholar
  10. Cruden, D.M. and Varnes, D.J. (1996). Landslide types and processes. In: Turner, A.K. and Schuster, R.L. (eds). Landslides: Investigation and Mitigation. National Academy Press, Washington, DC. Special Report, 36-75.Google Scholar
  11. Dahal, R.K. and Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100: 429-443.CrossRefGoogle Scholar
  12. Dapples, F., Lotter, A.F., van Leeuwen, J.F.N., van der Knaap, W.O., Dimitriadis, S. and Oswald, D. (2002). Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology, 27(2): 239-248.CrossRefGoogle Scholar
  13. District Administration, Almora (2011). Natural calamity. District Administration, Almora, Uttarakhand. Available at: http://almora.nic.in/pages/display/66-casualty-damage (accessed October, 2011).
  14. Froehlich, W., Gil, E., Kasza, I. and Starkel, L. (1989). Thresholds in the transformation of slopes and river channels in the DarjeelingHimalaya, India. Studia Geomor- phologica Carpatho-Balcanica, 23: 105-121.Google Scholar
  15. Gerrard, J. and Gardner, R. (2002). Relationships between landsliding and land use in the Likhu Khola Drainage Basin, Middle Hills, Nepal. Mountain Research and Development, 22(1): 48-55.CrossRefGoogle Scholar
  16. Glade, T. (2003). Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena, 51: 297-314.CrossRefGoogle Scholar
  17. Glade, T., Crozier, M. and Smith, P. (2000). Applying Probability Determination to Refine Landslide-triggering Rainfall Thresholds Using an Empirical "Antecedent Daily Rainfall Model". Pure and Applied Geophysics, 157: 1059-1079.CrossRefGoogle Scholar
  18. Gray, D.H. and Leiser, A.T. (1982). Biotechnical Slope Protection and Erosion Control. Van Nostrand-Reinhold, New York.Google Scholar
  19. Guzzetti, F., Carrara, A., Cardinali, M. and Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their applications in a multi-scale study, Central Italy. Geomorphology, 31: 181-216.CrossRefGoogle Scholar
  20. Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2007a). The rainfall intensity- duration control of shallow landslides and debris flows: An update. Landslides, 5(1): 3-17.CrossRefGoogle Scholar
  21. Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2007b). Rainfall thresholds for the initiation of landslides. Meteorology and Atmospheric Physics, 98: 239-267.CrossRefGoogle Scholar
  22. Haigh, M.J. (2002). Landslide prediction: Criticality, magnitude and frequency. In: Subramanian, V. (ed.). Environmental Hazards in South Asia. Capital Publishing Company, New Delhi.Google Scholar
  23. Haigh, M.J. (1993). Landslide ecology: Mussoorie-Tehri road. In: Rajwar, G.S. (ed.) Garhwal Himalaya: Ecology & Environment. Ashish, New Delhi.Google Scholar
  24. Haigh, M.J. (1984). Landslide prediction and highway maintenance in the Lesser Himalaya, India. Zeitschrift fur Geomorphologie, Suppl. Bd 51, 17-38.Google Scholar
  25. Haigh, M.J., Rawat, J.S. and Bartarya, S.K. (1988). Environmental correlations of landslide frequency along new highways in the Himalaya: Preliminary results. Catena, 15(6): 539-553.CrossRefGoogle Scholar
  26. Haigh, M.J., Rawat, J.S. and Bartarya, S.K. (1987). Impact of hill roads on downslope forest cover. Himalaya: Man and Nature, 11(4): 2-3.Google Scholar
  27. Haigh, M.J., Rawat, J.S., Bartarya, S.K. and Rawat, M.S. (1993). Environmental influences on landslide activity, Almora Bypass, Kumaun Lesser Himalaya. Natural Hazards, 8(2): 153-170.CrossRefGoogle Scholar
  28. Haigh, M.J., Rawat, J.S., Bartarya, S.K. and Rawat, M.S. (1992). Analysis of landslide sites: Kilbury Road, Kumaun Himalaya. Current Science, 62(7): 518-522Google Scholar
  29. Haigh, M.J., Rawat, J.S., Rawat, M.S., Bartarya, S.K. and Rai, S.P. (1995). Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. Forest Ecology & Management, 78: 173-189.CrossRefGoogle Scholar
  30. Howell, J. (1999). Roadside Bio-engineering Reference Manual. HM Government of Nepal, Department of Roads, Kathmandu.Google Scholar
  31. Huang, Z., Law, K.T., Liu, H. and Jiang, T. (2009). The chaotic characteristics of landslide evolution: A case study of Xintan landslide. Environmental Geology, 56(8): 1585-1591.CrossRefGoogle Scholar
  32. Joshi, V. and Kumar, K. (2006). Extreme rainfall events and associated natural hazards in Alaknanda valley, Indian Himalayan region. Journal of Mountain Science, 3(3): 228-236.CrossRefGoogle Scholar
  33. Kumar, K., Rawat, D.S. and Joshi, R. (1997). Chemistry of springwater in Almora, Central Himalaya, India. Environmental Geology, 31(3-4): 150-156.CrossRefGoogle Scholar
  34. Kapur, A. (2010). Vulnerable India: A Geographical Study of Disasters. Sage, New Delhi.Google Scholar
  35. Klecka, W.R. (1975). Discriminant analysis. In: Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner, K. and Bent, D.H. (eds). SPSS: Statistical Package for the Social Sciences (2e). McGraw Hill, New York.Google Scholar
  36. Korup, O. and Weidinger, J.T. (2011). Rock type, precipitation, and the steepness of Himalayan threshold hillslopes. Geological Society, London, Special Publications, 353: 235-249.CrossRefGoogle Scholar
  37. Laszlo, E. (1972). The Systems View of the World. G. Braziller, New York.Google Scholar
  38. Larsen, M.C. and Parks, J.E. (1997). How wide is a road? The association of roads and mass-wasting in a forested montane environment. Earth Surface Processes and Landforms, 22(9): 835-848.CrossRefGoogle Scholar
  39. Lee, S. and Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40(9): 1095-1113.CrossRefGoogle Scholar
  40. Lockwood, D.R. and Lockwood, J.A. (2008). Grasshopper population ecology: Catastrophe, criticality, and critique. Ecology and Society, 13(1): 34. Available at: http://www.ecologyandsociety.org/vol13/iss1/art34/ (accessed November 2011).
  41. Lockwood, D.R. and Lockwood, J.A. (1997). Evidence of self-organized criticality in insect populations. Complexity, 2: 49-58.CrossRefGoogle Scholar
  42. Maharaja, R.J. (1993). Landslide processes and landslide susceptibility analysis from an upland watershed: A case study from St. Andrew, Jamaica, West Indies. Engineering Geology, 34(1-2): 53-79.Google Scholar
  43. Magliulo, P., Di Lisio, A. and Filippo Rus, F. (2009). Comparison of GIS-based methodologies for the landslide susceptibility assessment. Geoinformatica, 13(3): 253-265.CrossRefGoogle Scholar
  44. Mandelbrot, B. (1967). How long is the coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, NS, 156(3775): 636-638. Available at: http:/ /users.math.yale.edu/~bbm3/web_pdfs/howLongIsTheCoastOfBritain.pdf (accessed November 2011).Google Scholar
  45. Montgomery, D.R., Schmidt, K.M., Greenberg, H.M. and Dietrich, W.E. (2000). Forest clearing and regional landsliding. Geology, 28(4): 311-314.CrossRefGoogle Scholar
  46. Noever, D.A. (1993). Himalayan sandpiles. Physical Review, E47(1): 724-725.Google Scholar
  47. Pande, A., Joshi, R.C. and Jalal, D.S. (2002). Selected landslide types in the Central Himalaya: their relation to geological structure and anthropogenic activities. The Environmentalist, 22(3): 269-287.CrossRefGoogle Scholar
  48. Pande, R.K. (2006). Landslide problems in Uttaranchal, India: Issues and challenges, Disaster Prevention and Management, 15(2): 247-255.CrossRefGoogle Scholar
  49. Panikkar, S.V. and Subramanyan, V. (1996). A geomorphic evaluation of the landslides around Dehradun and Mussoorie, Uttar Pradesh, India. Geomorphology, 15(2): 169-181.CrossRefGoogle Scholar
  50. Pant, P.D. (1990). Geological and Geomophological Investigations of Laharkhet- Karmi area, with special emphasis landslide study, District Almora, Uttar Pradesh. Kumaun University, Nainital, Uttarakhand. Faculty of Science, PhD thesis.Google Scholar
  51. Parry, S. (2011). The application of geomorphological mapping in the assessment of landslide hazard in Hong Kong. Developments in Earth Surface Processes, 15: 413-442.CrossRefGoogle Scholar
  52. Parthasarathy, A. (2001). Choice Upanishads. Parthasarathy, Mumbai.Google Scholar
  53. Pelletier, J.D., Malamud, B.D., Blodgett, T. and Turcotte, D.L. (1997). Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Engineering Geology, 48(3-4): 255-268.CrossRefGoogle Scholar
  54. Rautelaa, P. and Paulb, S.K. (2001). August 1998 landslide tragedies of central Himalayas (India): learning from experience. International Journal of Environmental Studies, 58(3): 343-355.CrossRefGoogle Scholar
  55. Rautelaa, P. and Lakhera, R.C. (2000). Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya (India). International Journal of Applied Earth Observation & Geoinformation, 2(3-4): 153-160.CrossRefGoogle Scholar
  56. Rawat, J.S. (2010). GIS of Almora Disaster 2010. Kumaun University Centre for Natural Resources Data Management System, Almora.Google Scholar
  57. Rawat, J.S. (2000). Land Creeping and Slumping due to Accelerated Infiltration and Dip-slope Cutting across an Aquifer in the Kumaun University Campus Almora Hillslope, Technical Report. Kumaun University Department of Geography, Almora, Uttarakhand.Google Scholar
  58. SAARC Secretariat (1992). Chapter 13: Mass Wasting and Land Slides. In: Regional Study on the Causes and Consequences of Natural Disasters and the Protection and Preservation of the Environment. South Asian Association for Regional Cooperation, Kathmandu. Available at: http://www.saarc-sec.org/userfiles/Large%20Publications/CCNDPPE/17-CCNDPPE-Chapter%20XIII%20-%20Mass%20Wasting%20and%20Land%20Slides.pdf (accessed September, 2011).
  59. Sah, N.K. and Pande, R.K. (1987). Construction activity and environmental degradation in Almora Town in the Central Himalaya. Mountain Research and Development, 7(1): 71-75.CrossRefGoogle Scholar
  60. Sarkar, S. and Kanungo, D.P. (2002). Landslides in relation to terrain parameters - A Remote Sensing and GIS approach. GIS development.net, Application: Natural Hazard Management: Landslides & Soil Erosion, 14: 5. Available from: http://www.gisdevelopment.net/application/natural_hazards/landslides/nhls0010pf.htm. (accessed January 5, 2011).
  61. Sati, S.P., Sundriyal, Y.P., Naresh, R. and Surekha, D. (2011). Recent landslides in Uttarakhand: Nature's fury or human folly. Current Science, 100(11): 1617-1620.Google Scholar
  62. Sati, S.P., Naithani, A. and Rawat, G.S. (1998). Landslides in the Garhwal Lesser Himalaya, UP, India. The Environmentalist, 18(3): 149-155.CrossRefGoogle Scholar
  63. Suzuki, T. (2002). Rock control in geomorphological processes: Research history in Japan and perspective. Japanese Geomorphological Union, Transactions, 23(2): 161-199.Google Scholar
  64. Stark, C.P. and Hovius, N. (2001). The characterization of landslide size distributions. Geophysical Research Letters, 28(6): 1091-1094.CrossRefGoogle Scholar
  65. Tamura, T. (2008). Occurrence of hillslope processes affecting riparian vegetation in upstream watersheds of Japan. In: Hitoshi Sakio, H. and Tamura, T. (eds). Ecology of Riparian Forests in Japan: disturbance, life history and regeneration. Springer, Tokyo.Google Scholar
  66. Tolia, R.S., Sharma, R., Pande, R.K. and Pathak, J.K. (2004). Landslide problems in the Uttarakhand region. In: Sahni, P., Dhameja, A. and Medury, U. (eds). Disaster Mitigation: Experiences and Reflections. Prentice Hall of India, New Delhi.Google Scholar
  67. Valdiya, K.S. (1980). Geology of the Kumaun Lesser Himalaya. Wadia Institute for Himalayan Geology, Dehra Dun, Uttarakhand, 220 pp.Google Scholar
  68. Valdiya, K.S. (1988). Geology of Kumaun: An outline. In: Valdiya, K.S. (ed.). Kumaun Land and People. Gyanodaya Prakashan, Nainital, Uttarakhand.Google Scholar
  69. van Westen, C.J., van Asch, T.W.J. and Soeters, R. (2006). Landslide hazard and risk zonation - Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2): 167-184.CrossRefGoogle Scholar
  70. Whitehead, A.N. (1920). The Concept of Nature. Cambridge University Press, Cambridge.Google Scholar
  71. Wieczoreck, G.F. (1996). Landslide triggering mechanisms. In: A.K. Turner and Schuster, R.L. (eds). Landslides: Investigation and Mitigation. Transportation Research Board, National Academy of Sciences, Washington, D.C., Special Report 247, pp. 76-90.Google Scholar
  72. Wu, S., Wang, H., Han, J., Shi, J., Shi, L. and Zhang, Y. (2009). The application of Fractal Dimensions of landslide boundary trace for evaluation of slope instability landslide disaster mitigation in Three Gorges Reservoir, China. Environmental Science and Engineering, 3: 465-474.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company 2012

Authors and Affiliations

  • Martin Haigh
    • 1
  • J. S. Rawat
    • 2
  1. 1.Department of Anthropology and GeographyOxford Brookes UniversityOxford OX3 0BPEngland
  2. 2.Centre for Excellence for NRDMS in Uttarakhand Dept of GeographyKumaun University,SSJ CampusAlmoraIndia

Personalised recommendations