Distributed Geocomputation for Modeling the Hydrology of the Black Sea Watershed

  • Nicolas Ray
  • Gregory Giuliani
  • Dorian Gorgan
  • Anthony Lehmann
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


The surface of the Black Sea watershed amounts to about 2 mil. km2 with a population of 160 mil. Inhabitants over 25 countries. In light of the current and forthcoming climate, land cover and population changes in this region, it is becoming extremely important to better understand how the quantity and quality of waters will vary in the catchment over the coming decades. To model the hydrology of this catchment, three steps are needed: (1) a large transnational data collection effort, (2) adequate management and sharing processes of the environmental data in a dedicated Spatial Data Infrastructure, and (3) distributed computing in order to allow running a high-resolution model. The EU/FP7 enviroGRIDS project (running 2009–2013) is addressing these steps with a 30-partner consortium mainly located in the Black Sea region. In this paper we are discussing how enviroGRIDS is approaching the various data-related challenges of the project. We particularly address the important issue of sharing data through international initiative such as GEOSS, the specificity of the hydrological modeling tool SWAT (Soil and Water Assessment Tool), and the technical requirement for using Grid computing infrastructures to optimize computationally-intensive simulations.


Black Sea Hydrological modeling SWAT Web Processing Service Grid computing Geospatial data Spatial Data Infrastructure 


  1. 1.
    Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Spatially-distributed modelling of hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430CrossRefGoogle Scholar
  2. 2.
    Advanced Resource Connector (ARC) (2011) http://www.nordugrid.org/middleware
  3. 3.
    Arnold J, Srinivasan R, Muttiah R, Williams J (1998) Large area hydrologic modeling and assessment – part 1: model development. J Am Water Resour Assoc 34(1):73–89CrossRefGoogle Scholar
  4. 4.
    Arnold JG, Srinivasan R, Muttiah RS, Allen PM (1999) Continental scale simulation of the hydrologic balance. J Am Water Resour Assoc 35:1037–1051CrossRefGoogle Scholar
  5. 5.
    Bacu V, Mihon D, Rodila D, Stefanut T, Gorgan D (2011) Grid based architectural components for SWAT model calibration. In: Proceedings of the 2011 international conference on High Performance Computing and Simulation (HPCS 2011), pp. 193–199, Istanbul, Turkey, July 4–8, 2011Google Scholar
  6. 6.
    Béjar R, Latre MA, Nogueras-Iso J, Muro-Medrano PR, Zarazaga-Soria FJ (2009) Systems of systems as a conceptual framework for spatial data infrastructures. Int J Spat Data Infrastruct Res 4:201–217Google Scholar
  7. 7.
    Bernard L, Craglia M (2005) SDI: from spatial data infrastructure to service driven infrastructure. Workshop on cross-learning on Spatial Data Infrastructures (SDI) and Information Infrastructures (II), TwenteGoogle Scholar
  8. 8.
    Borysova O, Kondakov A, Paleari S, Rautalahti-Miettinen E, Stolberg F, Daler D (2005) Eutrophication in the Black Sea region; Impact assessment and Causal chain analysis. University of Kalmar, KalmarGoogle Scholar
  9. 9.
    CEC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for the community action in the field of water policy. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF
  10. 10.
    Charvat K, Kafka S, Splichal M, Alberts M, Martinsone A, Horak P, Vlk M, Bruins P (2008) URM concept for sharing information inside of communities, WCCA 2008, TokyoGoogle Scholar
  11. 11.
    Coleman DJ, McLaughlin JD, Nichols S (1997) Building a spatial data infrastructure. In: 64th permanent congress meeting of the Fédération Internationale des Géomètres (FIG), Singapore, p 11Google Scholar
  12. 12.
    dCache project (2011) http://www.dcache.org/
  13. 13.
    Enabling Grids for E-sciencE project (EGEE) (2010) http://www.eu-egee.org/
  14. 14.
    European Grid Infrastructure (EGI) (2011) http://www.egi.eu/
  15. 15.
    European Middleware Initiative (EMI) (2011) http://www.eu-emi.eu/
  16. 16.
    Foster I, Kesselman C (1999) The grid: blueprint for a new computing infrastructure. In: Foster I, Kesselman C (eds) Globus: a toolkit-based grid architecture. Morgan Kaufmann, San Francisco, pp 259–278Google Scholar
  17. 17.
    Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans Am Soc Agric Biol Eng 50(4):1211–1250Google Scholar
  18. 18.
    GEO Secretariat (2005) Global earth observation system of systems 10-year implementation plan reference document. GEO, Geneva. http://www.earthobservations.org/documents/10-Year%20Plan%20Reference%20Document.pdf
  19. 19.
    GEO Secretariat (2007) The full picture. GEO, Geneva. http://www.earthobservations.org/documents/fullpicture/fp_ps_p136_we_cl.pdf
  20. 20.
    GEO Secretariat (2007) Strategic guidance for current and potential contributors to GEOSS. GEO, Geneva. http://www.earthobservations.org/documents/portal/25_Strategic%20Guidance%20Document.pdf
  21. 21.
    GEO Secretariat (2007) Tactical guidance for current and potential contributors to GEOSS. GEO, Geneva. http://www.earthobservations.org/documents/portal/24_Tactical%20Guidance%20for%20current%20and%20potential%20contributors%20to%20GEOSS.pdf
  22. 22.
    Gewin V (2011) Social media: self-reflection, online. Nature 471(7340):667–669CrossRefGoogle Scholar
  23. 23.
    Giuliani G, Ray N, Lehmann A (2011) Grid-enabled Spatial Data Infrastructure for environmental sciences: challenges and opportunities. Future Gener Comput Syst 27(3):292–303. doi:10.1016/j.future.2010.09.011CrossRefGoogle Scholar
  24. 24.
    Giuliani G, Ray N, Schwarzer S, De Bono A, Peduzzi P, Dao H, Van Woerden J, Witt R, Beniston M, Lehmann A (2011) Sharing environmental data through GEOSS. Int J Appl Geospat Res 2(1):1–17. doi:10.4018/jagr.2011010101CrossRefGoogle Scholar
  25. 25.
    Giuliani G, Nativi S, Lehmann A, Ray N (in review) WPS mediation: an approach to process geospatial data on different computing backends. Comput GeosciGoogle Scholar
  26. 26.
    Gore A (1998) The digital earth: understanding our planet in the 21st century. Photogramm Eng Remote Sens 65(5):528–530Google Scholar
  27. 27.
    Gorgan D, Bacu B, Rodila D, Pop P, Petcu D (2010) Experiments on ESIP – environment oriented satellite data processing platform. Earth Sci Inform J 3(4):297–308, ISSN: 1865–0473CrossRefGoogle Scholar
  28. 28.
    Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian River basins. Curr Sci 90:346–353Google Scholar
  29. 29.
    IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    IPCC (2007) Climate change 2007: mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Kaika M (2003) The water framework directive: a new directive for a changing social, political and economic European framework. Eur Plan Stud 11(3)Google Scholar
  32. 32.
    Lecca G, Petitdidier M, Hluchy L, Ivanovic M, Kussul N, Ray N, Thieron V (2011) Grid computing technology for hydrological applications. J Hydrol 403:186–199. doi:10.1016/j.jhydrol.2011.04.003CrossRefGoogle Scholar
  33. 33.
    Lightweight Middleware for Grid Computing (gLite) (2011) http://glite.cern.ch/
  34. 34.
    Manca S, Soru C, Cau P, Meloni G, Fiori M (2009) A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. In: Presentation at the 5th International SWAT Conference, August 3–7, Boulder, Colorado, USAGoogle Scholar
  35. 35.
    Mansourian A, Rajabifard A, Valadan Zoej MJ, Williams D (2004) SDI for disaster management to support sustainable development. Paper presented at the Map Asia, BeijingGoogle Scholar
  36. 36.
    Masser I (2005) The future of spatial data infrastructures. ISPRS Workshop on service and application of spatial data infrastructure, HangzhouGoogle Scholar
  37. 37.
    Masser I (2005) GIS worlds: creating spatial data infrastructures. ESRI Press, RedlandsGoogle Scholar
  38. 38.
    Masser I (2007) Building European spatial data infrastructure. ESRI Press, RedlandsGoogle Scholar
  39. 39.
    Nativi S, Bigagli L (2009) Discovery, mediation, and access services for earth observation data. IEEE J Sel Top Appl Earth Obs Remote Sens 2(4):233–240. doi:10.1109/jstars.2009.2028584CrossRefGoogle Scholar
  40. 40.
    Nebert DD (2005) Developing spatial data infrastructure: the SDI cookbook. GSDI Association, Chapel Hill. http://memberservices.gsdi.org/files/?artifact_id=655
  41. 41.
    Neitsch SL, Arnold JG, Kiniry J, Williams JR (2005) Soil and water assessment tool theoretical documentation, version 2005. Grassland, Soil and Water Research Labratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Research Station, Temple, TexasGoogle Scholar
  42. 42.
    Open Geospatial Consortium (2004) The havoc of non-interoperability. OGC, White Paper, http://portal.opengeospatial.org/files/?artifact_id=5097
  43. 43.
    Open Geospatial Consortium (2008) OGC reference model. OGC http://portal.opengeospatial.org/files/?artifact_id=31112
  44. 44.
    PCU (1999) Strategic action plan for the Danube River basin 1995–2005 – Revision 1999. Danube Pollution Reduction Programme, Programme Co-ordination Unit, ViennaGoogle Scholar
  45. 45.
    Rajabifard A, Williamson IP (2001) Spatial data infrastructures: concept, SDI hierarchy and future directions. In: Geomatics’80, Tehran, IranGoogle Scholar
  46. 46.
    Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder AJB (2008) Modelling blue and green water availability in Africa. Water Resour Res 44, W07406:1–18Google Scholar
  47. 47.
    Uniform Interface to Computing Resources (UNICORE) (2011) http://www.unicore.eu/
  48. 48.
    Vandenbroucke D (2010) Spatial data infrastructures in Europe: state of play spring 2010. K.U. Leuven, Leuven. http://inspire.jrc.ec.europa.eu/reports/stateofplay2009/INSPIRE%20NSDI%20SoP%20-%20Summary%20Report%202010%20-%20v4%204.pdf
  49. 49.
    Whittaker G (2004) Use of a Beowulf cluster for estimation of risk using SWAT. Agron J 96(5):1495–1497CrossRefGoogle Scholar
  50. 50.
    Worldwide LHC Computing Grid (WLCG) (2011) http://lcg.web.cern.ch/LCG/
  51. 51.
    WWF (2008) Greening the Black Sea synergy. EU Regional Office, BrusselsGoogle Scholar
  52. 52.
    Yalew SG, van Griensven A, Ray N, Betrie GD, Kokoszkiewicz L (in review) Parallel computing of a large scale SWAT model. Environ Model SoftwGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nicolas Ray
    • 1
    • 2
    • 3
  • Gregory Giuliani
    • 1
    • 2
    • 3
  • Dorian Gorgan
    • 4
  • Anthony Lehmann
    • 1
    • 2
    • 3
  1. 1.Institute of Environmental Sciences, Climatic Change and Climate Impacts, enviroSPACE Lab.University of GenevaCarougeSwitzerland
  2. 2.Division of Early Warning and Assessment, Global Resource Information Database – EuropeUnited Nations Environment ProgrammeChâtelaineSwitzerland
  3. 3.Forel InstituteUniversity of GenevaVersoixSwitzerland
  4. 4.Technical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations