Recent Landform Evolution in the Romanian Carpathians and Pericarpathian Regions

  • Dan Bălteanu
  • Marta Jurchescu
  • Virgil Surdeanu
  • Ion Ionita
  • Cristian Goran
  • Petru Urdea
  • Maria Rădoane
  • Nicolae Rădoane
  • Mihaela Sima
Chapter
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

In the Romanian Carpathians, developed on crystalline and volcanic rocks, the main geomorphological processes are rockfalls, debris flows, and topples. In the eastern part of the Eastern Carpathians, built up of Cretaceous and Paleogene flysch, landslides and mudflows are of major significance. High and middle mountain karst features and cave systems are also widespread. In the alpine area of the Southern and Eastern Carpathians, avalanches are common on the steep slopes of glacial cirques and valleys. Landslides also develop on high quarry slopes, waste dumps and tailing dams characteristic of the mining sites of the Apuseni Mountains. High discharges along the Carpathian rivers cause intense erosion and the undercutting of slopes, favoring landslides and flooding. Although in fluvial erosion channel incision is predominant (for half of all river sections studied), riverbed aggradation is also observed locally. On the agricultural lands of the Subcarpathians and in the Transylvanian Depression slopes are degraded by sheet and gully erosion, landslides, and mudflows. On the Moldavian Plateau soil erosion, gullying, and landslides are major exogenous geomorphic processes. The country-wide spatial distribution of these geomorphological hazards has been evaluated by several authors (e.g., Geografia României I. 1983; Bălteanu 1997).

Keywords

Landslides Soil erosion and gullying Karst Periglacial processes Fluvial processes Mining impact 

References

  1. Amăriucăi M (2000) Şesul Moldovei extracarpatice dintre Păltinoasa şi Roman. Studiu geomorphologic şi hidrologic (The Extra-Carpathian floodplain of Moldova River between Păltinoasa and Roman. Geomorphological and Hydrologic Study). Edit. Carson, Iaşi, 180 p (in Romanian)Google Scholar
  2. Andra A, Mafteiu M (2008) The landslides from Tigveni–Momaia. In: Bălteanu D (ed) IAG Regional conference on geomorphology “Landslides, floods and global environmental change in mountain regions”. Field Guidebook, University Publishing House, Bucharest, pp 59–64Google Scholar
  3. Armencea Gh, Marinescu Gh, Stoicescu H, Lup I (1980) Aspecte ale prognozei procesului de coborâre al albiei râurilor aval de baraje (On the river bed incision prognosis downstream of dams). Hidrotehnica 25(5):101–103 (in Romanian)Google Scholar
  4. Badea L (1957) Observaţii asupra unor alunecări din bazinul Buzăului (Some remarks on the landslides of the Buzău drainage basin). Probleme de Geografie 4:388–392 (in Romanian)Google Scholar
  5. Bălteanu D (1975) Un eşantion de hartă morfodinamică din Subcarpaţii Buzăului (A morphodynamic map in the Buzău Subcarpathians). In: Lucrările Colocviului Naţional de Geomorfologie Aplicată şi Cartografiere Geomorfologică, Iaşi, pp 349–354 (in Romanian)Google Scholar
  6. Bălteanu D (1983) Experimentul de teren în geomorfologie (Field experiment in geomorphology). Edit. Academiei Române, Bucureşti, 156 p (in Romanian)Google Scholar
  7. Bălteanu D (1986) The importance of mass movement in the Romanian Subcarpathians. Z Geomorphol 58(Supplement-Band):173–190Google Scholar
  8. Bălteanu D (1997) Geomorphological hazards of Romania. In: Embleton C, Embleton-Hamann Ch (eds) Geomorphological hazards of Europe. Elsevier, Amsterdam, pp 409–427CrossRefGoogle Scholar
  9. Bălteanu D, Jurchescu M (2008) Deep-seated landslides (Glimee) in the Transylvanian Depression. Map in: Bălteanu D (ed) IAG Regional conference on geomorphology “Landslides, floods and global environmental change in mountain regions”. Field Guidebook, University Publishing House, BucharestGoogle Scholar
  10. Bălteanu D, Micu M (2009) Landslide investigation: from morphodynamic mapping to hazard assessment. A case study in the Romanian Subcarpathians, Muscel catchment. In: Malet J-Ph, Remaitre A, Bogaard T (eds) Landslide Processes. From geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 235–241Google Scholar
  11. Bălteanu D, Teodoreanu V (1983) The mass movement from Malu Alb. In: Excursion guidebook symposium “The role of geomorphological field experiments in land and water management”, Bucharest, pp 77–80Google Scholar
  12. Bălteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124(3–4):102–112CrossRefGoogle Scholar
  13. Barbu N (1976) Obcinele Bucovinei. Edit. Stiint. si Enciclop, Bucuresţi, 316 p (in Romanian)Google Scholar
  14. Bătucă D (1978) Aspecte ale morfologiei generale a albiilor râurilor din bazinul hidrografic Mureş superior, (On the general morphology of the riverbeds in the Upper Mureş drainage basin). Hidrotehnica 23(6):121–124 (in Romanian)Google Scholar
  15. Bird G, Brewer P, Macklin M, Balteanu D, Driga B, Serban M, Zaharia S (2003) The solid state portioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Appl Geochem 18:1583–1595CrossRefGoogle Scholar
  16. Bird G, Brewer P, Macklin M, Balteanu D, Serban M, Driga B, Zaharia S (2008) River system recovery following the Novat-Rosu tailings dam failure, Maramureş County, Romania. Appl Geochem 23(12):3498–3518CrossRefGoogle Scholar
  17. Bleahu M, Povară I (1976) Catalogul peşterilor din România (The catalogue of the caves of Romania). Edit. C.N.E.F.S, Bucureşti, 53 pGoogle Scholar
  18. Bleahu M, Rusu T (1965) Carstul din România (Karst in Romania). Lucrările Institutului de Speologie “Emil Racoviţă”, Bucureşti 4:59–73 (in Romanian)Google Scholar
  19. Bondar C, State I, Dediu R, Supuran I, Vaşlaban G, Nicolau G (1980) Date asupra patului albiei Dunării în regim amenajat pe sectorul cuprins între Baziaş şi Ceatal Izmail (Data on the Danube managed riverbed between Baziaş and Ceatal Izmail). Studii şi Cercetări de Hidrologie 48:145–168 (in Romanian)Google Scholar
  20. Brewer P, Macklin M, Balteanu D, Coulthard T, Driga B, Howard A, Bird G, Zaharia S, Serban M (2002) The January and march tailings dam failures in Maramures county, Romania, and their transboundary impacts on the river systems. In: Proceedings of advanced research workshop “Approaches to handling environmental problems in the mining and metallurgical regions of NIS counties”, Mariupol, 5–7 Sept 2002, pp 56–64Google Scholar
  21. Burdulea-Popa A (2007) Geomorfologia albiei râului Siret (The geomorphology of the Siret River Channel). Manuscript PhD thesis. Al. I. Cuza University of Iaşi (in Romanian)Google Scholar
  22. Canciu C (2008) Valea Dunării între Brăila şi Pătlăgeanca – studiu geomorfologic (The Danube Valley between Brăila and Pătlăgeanca – Geomorphological Study). Manuscript PhD thesis, University of Bucharest (in Romanian)Google Scholar
  23. Chiţu Z (2010) Predicţia spaţio-temporală a hazardului la alunecări de teren utilizând tehnici S.I.G. Studiu de caz arealul subcarpatic dintre Valea Prahovei şi Valea Ialomiţei (Spatial and temporal prediction of landslide hazard using GIS. Case-study: the Subcarpathian area between the Prahova and Ialomiţa valleys). Manuscript PhD thesis, University of Bucharest, 295 p (in Romanian)Google Scholar
  24. Chiţu Z, Şandric I, Mihai B, Săvulescu I (2009) Evaluation of landslide susceptibility using multivariate statistical methods: a case-study in the Prahova Subcarpathians, Romania. In: Malet JPh, Remaitre A, Bogaard T (eds) Landslide Processes. From geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 265–270Google Scholar
  25. Constantin S (1992) The intra-Aptian karstification phase and the paleokarst associated deposits in the southern sector of Locva Mountains (South-West Romania). Theor Appl Karstol 5:83–92Google Scholar
  26. Constantin S, Lauritzen S-E, Stiuca E, Petculescu A (2001) Karst evolution in the Danube Gorge from U-series dating of a bear skull and calcite speleothems form Pestera de la Gura Ponicovei (Romania). Theor Appl Karstol 13–14:39–50Google Scholar
  27. Constantin M, Trandafir AC, Jurchescu MC, Ciupitu D (2010) Morphology and environmental impact of the Colţi-Aluniş landslide (Curvature Carpathians), Romania. Environ Earth Sci 59(7):1569–1578CrossRefGoogle Scholar
  28. Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu basin (Romania). Environ Earth Sci 63(2):397–406. doi:10.1007/s12665-010-0724-y CrossRefGoogle Scholar
  29. Dârja M, Budiu V, Tripon D, Păcurar I, Neag V (2002) Eroziunea hidrică şi impactul asupra mediului (Erosion by water and its impact on the environment). Edit. Risoprint, Cluj-Napoca, 100 p (in Romanian)Google Scholar
  30. de Martonne E (1900) Contribution a l’etude de la période glaciaire dans les Karpates Méridionales. Bull Soc Géol de la France 28(3):275–319Google Scholar
  31. de Martonne E (1907) Recherches sur l’évolution morphologique des Alpes de Transylvanie (Karpates Méridionales). Revue de géographie annuelle I (1906–1907), 286 pGoogle Scholar
  32. Diaconu C, Ciobanu S, Avădanei A, Motea I, Stănescu S (1962) Despre stabilitatea albiilor râurilor României (On the stability of river channels in Romania during the last 30–40 years). Studii de Hidrologie 3:53–66 (in Romanian)Google Scholar
  33. Dinu M, Cioacă A (2000) Rolul hazardelor naturale în evoluţia localităţilor din România (On the role of natural hazards in the evolution of settlements in Romania). Analele Universităţii Spiru Haret, Bucureşti 3:43–52 (in Romanian)Google Scholar
  34. Donisa I (1968) Geomorfologia văii Bistriţei (Geomorphology of the Bistriţa Valley). Edit. Academiei Române, Bucureşti, 285 p (in Romanian)Google Scholar
  35. Dragotă C, Micu M, Micu D (2008) The relevance of pluvial regime for landslide genesis and evolution. Case study: Muscel basin (Buzău Subcarpathians, Romania). In: Present environment & sustainable development. 2. Edit. Universităţii “Al. I. Cuza”, Iaşi, pp 242–257Google Scholar
  36. Dumitriu D (2007) Sistemul aluviunilor din bazinul râului Trotuş (Alluvial system in the Trotuş River basin). Edit. Universităţii, Suceava, 259 p (in Romanian)Google Scholar
  37. Feier I (2007) Evoluţia istorică a migrării albiei râului Someşu Cald, (Historical evolution of the Someşu Cald riverbed mobility). Manuscript PhD thesis, “A. I. Cuza” University, Iaşi (in Romanian)Google Scholar
  38. Feier I, Rădoane M (2008) Dinamica in plan orizontal a albiei minore a raului Somesu Mic inainte de lucrarile hidrotehnice majore (1870–1968) (Channel planform dynamics of the Someşu Mic River before the major human modifications, 1870–1968). Analele Universităţii Suceava 16:13–26 (in Romanian)Google Scholar
  39. Gârbacea V (1992) Harta glimeelor din Câmpia Transilvaniei (Map of the “glimee”-type landslides distribution in the Transylvanian Plain). Studia Universitatis Babeş-Bolyai, Geographia 37(1–2):21–24 (in Romanian)Google Scholar
  40. Gârbacea V (1996) Remarques sur le relief de “glimee” en Roumanie. Geografia Fisica e Dinamica Quaternaria 19:219–221Google Scholar
  41. Gârbacea V, Grecu F (1983) Relieful de glimee din Podişul Transilvaniei şi potenţialul lor economic (The glimee landforms of the Transylvanian Plateau and their economic potential). Memoriile Secţiilor Ştiinţifice ale Academiei R.S.R. 4(2):305–312 (in Romanian)Google Scholar
  42. Gaşpar R, Untaru E (1979) Contribuţii la studiul transportului de aluviuni în bazinele torenţiale parţial împădurite (Contributions to the study of sediment transport in partially forested torrential catchments). Buletinul Informativ ASAS 8:87–95 (in Romanian)Google Scholar
  43. Goran C (1980) Catalogul peşterilor din România – 1979 (The Romanian Caves Register – 1979). Buletinul Informativ CCSS 4:172–179 (in Romanian)Google Scholar
  44. Goran C (1982) Catalogul sistematic al peşterilor din România (A systematic catalogue of caves in Romania). Edit. Sport-Turism, Bucureşti, 496 p (in Romanian)Google Scholar
  45. Goran C (1983) Les types de relief karstique de Roumanie. Trav Inst Spéol “Emile Racovitza”, Bucureşti 22:91–102Google Scholar
  46. Grecu F (1992) Bazinul Hârtibaciului – Elemente de morfohidrografie (The Hârtibaciu Basin – Elements of Morphohydrography). Edit. Academiei Române, Bucureşti, 160 p (in Romanian)Google Scholar
  47. Grumăzescu C (1975) Depresiunea Haţegului. Studiu geomorfologic (The Haţeg Depression. Geomorphological study). Edit. Academiei Romăne, Bucureşti, 148 p (in Romanian)Google Scholar
  48. Hack JT (1960) Interpretation of erosional topography in humid temperate regions. Am J Sci 258-A(67):219–230Google Scholar
  49. Hâncu S (1976) Regularizarea albiilor râurilor (Channelization of Riverbeds). Edit. Ceres, Bucuresti, 144 p (in Romanian)Google Scholar
  50. Ichim I (1979) Muntii Stanisoarei. Studiu geomorfologic (The Stânişoara Mountains. Geomorphic Study). Ed. Acad, Bucuresti, 121 p (in Romanian)Google Scholar
  51. Ichim I (1980) Probleme ale cercetării periglaciarului în România (Issues on the periglacial research in Romania). Studii şi Cercetări Geol Geofiz Geogr–Geografie 27(1):127–135 (in Romanian)Google Scholar
  52. Ichim I, Rădoane M (1980) On the anthropic influence time in morphogenesis with a special regard on the problem of channel river dynamics. Revue Roumaine Géol Géophys Géogr, série Géographie 24:35–40Google Scholar
  53. Ichim I, Rădoane M (1981) Contribuţii la studiul dinamicii albiilor de râu în perioade de timp scurt şi de timp îndelungat (Contributions to the study of riverbed dynamics during short and long time periods). Hidrotehnica 25(5):135–138 (in Romanian)Google Scholar
  54. Ichim I, Rădoane M (1984) Cercetări privind sursele de aluviuni şi energia potenţială de eroziune, cu exemplificări din regiunea Vrancei (Research on the sediment sources and the potential energy of erosion, with examples from the Vrancea region). Hidrotehnica 29(6):183–187 (in Romanian)Google Scholar
  55. Ichim I, Rădoane M (1986) Efectele barajelor în dinamica reliefului. Abordare geomorfologică (The effects of dams on relief dynamics. A geomorphological approach). Edit. Academiei R. S. România, Bucureşti, 157 p (in Romanian)Google Scholar
  56. Ichim I, Rădoane M (1990) Channel sediment variability along a river: a case study of the Siret River, Romania. Earth Surf Process Landf 15(3):211–226CrossRefGoogle Scholar
  57. Ichim I, Rădoane M, Rădoane N, Surdeanu V, Amăriucăi M (1979) Problems of meander geomorphology with particular emphasis on the channel of the Bârlad River. Revue Roumaine Géol Géophys Géogr, série Géographie 23:35–47Google Scholar
  58. Ichim I, Bătucă D, Rădoane M, Duma D (1989) Morfologia şi dinamica albiilor de râu (River channel morphology and dynamics). Edit. Tehnică, Bucureşti, 407 p (in Romanian)Google Scholar
  59. Ichim I, Mihaiu G, Surdeanu V, Rădoane M, Rădoane N (1990) Gully erosion in agricultural lands in Romania. In: Boardman J, Foster IDL, Dearing JA (eds) Soil erosion on agricultural land. Wiley, Chichester, pp 55–68Google Scholar
  60. Ichim I, Rădoane M, Rădoane N, Miclăuş C, Grasu C (1996) Sediment budget of the Putna drainage basin (Vrancea). Revue Roumaine Géol Géophys Géogr, série Géographie 40:125–132Google Scholar
  61. Ichim I, Rădoane M, Rădoane N, Grasu C, Miclăuş C (1998) Dinamica sedimentelor. Aplicaţii la râul Putna – Vrancea (Sediments dynamics. Applications to the Putna River, Vrancea). Edit. Tehnică, Bucuresti, 192 p (in Romanian with English summary)Google Scholar
  62. Ielenicz M (1970) Zonele cu alunecări de teren din ţara noastră (Landslides in our country). Terra 2(1):31–40 (in Romanian)Google Scholar
  63. Ielenicz M (1984) Munţii Ciucaş-Buzău. Studiu geomorfologic (The Ciucaş-Buzău Mountains. Geomorphic Study). Edit. Academiei Române, Bucureşti, 146 p (in Romanian)Google Scholar
  64. Ilinca V (2010) Valea Lotrului. Studiu de geomorfologie aplicată, (The Lotru Valley. Applied geomorphological study). Manuscript PhD thesis, University of Bucharest, 217 p (in Romanian)Google Scholar
  65. Ionita I (1998) Studiul geomorfologic al degradarilor de teren din bazinul mijlociu al Barladului. (Geomorphological study of the land degradation in the middle catchment of Barlad river). Manuscript PhD thesis, University “Alexandru Ioan Cuza”, Iaşi, 287 p (in Romanian)Google Scholar
  66. Ionita I (1999) Sediment delivery scenarios for small watersheds. In: Proceedings of the symposium “Vegetation, land use and erosion processes”. Institute of Geography, Bucharest, pp 66–73Google Scholar
  67. Ionita I (2000a) Geomorfologie Aplicata. Procese de degradare a terenurilor deluroase (Applied Geomorphology. Processes of hilly terrain degradation). Edit. Univ. “Al.I. Cuza”, Iaşi, 247 p (in Romanian)Google Scholar
  68. Ionita I (2000b) Formarea si evolutia ravenelor din Podisul Barladului. (Forming and evolution of gullies in the Bârlad Plateau). Edit. Corson, Iaşi, 169 p (in Romanian)Google Scholar
  69. Ionita I (2003) Hydraulic efficiency of the discontinuous gullies. In: Poesen J, Valentin C (eds) Gully erosion and global change. Catena 50(2–4):369–379Google Scholar
  70. Ionita I (2006) Gully development in the Moldavian Plateau of Romania. In: Special Issue Helming K, Rubio JL, Boardman J (eds) Soil erosion research in Europe. Catena 68(2–3):133–140Google Scholar
  71. Ionita I (2008) Sediment movement from small catchments within the Moldavian Plateau of Eastern Romania. In: Schmidt J, Cochrane T, Phillips Ch, Elliot S, Davies T, Basher L (eds) Sediment dynamics in changing environments. IAHS Publication 325, IAHS Press, Wallingford, pp 316–320Google Scholar
  72. Ionita I, Margineanu RM (2000) Application of 137Cs for measuring soil erosion/deposition rates in Romania. Acta Geologica Hispanica 35(3–4):311–319Google Scholar
  73. Ionita I, Margineanu R, Hurjui C (2000) Assessment of the reservoir sedimentation rates from 137Cs measurements in the Moldavian Plateau. In: Queralt I, Zapata F, Agudo G (eds) Assessment of soil erosion and sedimentation through the use of the 137Cs and related techniques. Acta Geologica Hispanica Special 35(3–4):357–367Google Scholar
  74. Ionita I, Rădoane M, Mircea S (2006) Chapter 1.13 “Romania”. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Wiley, Amsterdam–London–New York, pp 155–166CrossRefGoogle Scholar
  75. Irimuş I-A (1996) La corréllation des glissements de terrain avec les types de dômes péripheriques dans le bassin de Transylvanie (Roumanie). Geografia Fisica e Dinamica Quaternaria 19:245–248Google Scholar
  76. Irimuş I-A (1998) Relieful pe domuri şi cute diapire în Depresiunea Transilvaniei (Landforms Developed on Domes and Diapir Folds). Edit. Presa Universitară Clujeană, Cluj, 300 p (in Romanian)Google Scholar
  77. Jeanrenaud, P (1971) Geologia Moldovei centrale dintre Siret şi Prut (Geology of the Central Moldavia between the Siret and Prut rivers). Manuscript abstract of the PhD thesis, Al. I. Cuza University, Iaşi (in Romanian)Google Scholar
  78. Lascu C, Sârbu Ş (1987) Peşteri scufundate (Underwater caves). Edit. Acad, Bucureşti, 255 p (in Romanian)Google Scholar
  79. Macklin M, Brewer P, Bălteanu D, Colthard T, Driga B, Howard A, Zaharia S (2003) The long-term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramureş County, upper Tisa Basin, Romania. Appl Geochem 18:241–257CrossRefGoogle Scholar
  80. Micu M (2008) Evaluarea hazardului legat de alunecari de teren in Subcarpatii dintre Buzau si Teleajen (Landslide Hazard Assessment in the Buzău – Teleajen Subcarpathians). Manuscript PhD thesis, Institute of Geography, Bucharest, 242 p (in Romanian)Google Scholar
  81. Micu M, Bălteanu D (2009) Landslide hazard assessment in the Bend Carpathians and Subcarpathians, Romania. Z Geomorphol 53(Supplement 3):49–64Google Scholar
  82. Micu M, Sima M, Bălteanu D, Micu D, Dragotă C, Chendeş V (2010) A multi-hazard assessment in the Curvature Carpathians of Romania. In: Malet J-Ph, Glade T, Casagli N (eds) Mountain risks: bringing science to society. CERG Editions, Strasbourg, pp 11–18Google Scholar
  83. Mihai B (2005) Munţii Timişului (Carpaţii Curburii). Potenţialul geomorfologic şi amenajarea spaţiului montan (The Timiş Mountains (Curvature Carpathians): Geomorphic Potential and Mountain Landscape Planning). Edit. Universităţii din, BucureştiGoogle Scholar
  84. Mihai Gh, Neguţ N (1981) Observaţii preliminare privind evoluţia ravenelor formate pe alternanţe de orizonturi permeabile şi impermeabile (Preliminary observations on the evolution of gullies formed on alternating permeable and impermeable horizons). Studii şi Cercetări de Geografie 28:117–126 (in Romanian)Google Scholar
  85. Mihai B, Şandric I, Săvulescu I, Chiţu Z (2009) Detailed mapping of landslide susceptibility for urban planning purposes in Carpathian and Subcarpathian towns of Romania. In: Gartner G, Ortag F (eds) Cartography in central and eastern Europe, Lecture notes in geoinformation and cartography. Springer, Heidelberg/Berlin, pp 417–429CrossRefGoogle Scholar
  86. Mihăilescu V (1926) Despre frane sau forme de teren rezultate din acţiunea de dărâmare a agenţilor externi (o propunere) (On landslides and landforms issued from the demolition action of external agents. A suggestion). Buletinul Societăţii Române de Geografie 45:101–110 (in Romanian)Google Scholar
  87. Mihăilescu V (1939a) Porniturile de teren din regiunea Nehoiaş, (Landslides in the Nehoiaş region). Buletinul Societăţii Române de Geografie 58:191–193 (in Romanian)Google Scholar
  88. Mihăilescu V (1939b) Porniturile de teren şi clasificarea lor (Landslides and their classification). Revista Geografică Română 2(2–3):106–113 (in Romanian)Google Scholar
  89. Mihăilescu V, Morariu T (1957) Consideraţii generale asupra periglaciarului şi stadiul cercetărilor actuale în România (General aspects on the periglacial and overview of current research in Romania). Studii şi Cercetări Geol série Géographie, Acad. Rom., Filiala Cluj 8(1–2):21–44 (in Romanian)Google Scholar
  90. Mircea S (2002) Formarea, evoluţia şi strategia de amenajare a ravenelor (Formation, evolution and management strategy of gullies). Edit. Bren, Bucureşti, 209 p (in Romanian)Google Scholar
  91. Mircea S (2006) Contribuţii la cunoaşterea evoluţiei formaţiunilor în adâncime în bazinele hidrografice, Rezumatul tezei de doctorat, (Contributions to the study of the evolution of gully formations in drainage basins), Manuscript abstract of the PhD thesis. University of Agricultural Sciences and Veterinary Medicine, Bucureşti, 85 p (in Romanian)Google Scholar
  92. Morariu T, Gârbacea V (1966) Quelques observations au sujet des processus de versant de la Depression Transylvanique. Revue Roumaine Géol Géophys Géogr, série Géographie 10(2):147–165Google Scholar
  93. Morariu T, Gârbacea V (1968a) Studii asupra proceselor de versant din Depresiunea Transilvaniei (Studies on slope processes in the Transylvanian Depression). Studia Universitatis Babeş-Bolyai, Geol Geogr, Cluj 1:81–90 (in Romanian)Google Scholar
  94. Morariu T, Gârbacea V (1968b) Déplacements massifs de terrain de type glimee en Roumanie. Revue Roumaine de Géol Géophys Géogr, serie Géographie 12(1–2):13–18Google Scholar
  95. Morariu T, Mihăilescu V, Dragomirescu SŞ, Posea Gr (1960) Le stade actuel de recherches sur le périglaciaire de la R.P. Roumaine. In: Recueil d’études géographiques concernant le territoire de la R.P. Roumaine. Edit. Academiei, Bucureşti, pp 45–53Google Scholar
  96. Morariu T, Diaconeasa B, Gârbacea V (1964) Age of land-slidings in the Transylvanian Tableland. Revue Roumaine de Géol Géophys Géogr, série Géographie 8:149–157Google Scholar
  97. Moţoc M (1963) Eroziunea solului pe terenurile agricole şi combaterea ei (Soil erosion on agricultural lands and its control). Edit. Agrosilvică, Bucureşti, 318 p (in Romanian)Google Scholar
  98. Moţoc M (1983) Ritmul mediu de degradare erozionala a solului in R. S. Romania (Mean rate of soil degradation by erosion in Romania). Buletinul Informativ al ASAS, 13. Bucureşti, (in Romanian)Google Scholar
  99. Moţoc M, Mircea S (2002) Evaluarea factorilor care determină riscul eroziunii hidrice în suprafaţă (Evaluation of the factors determining the soil erosion risk). Edit. Bren, Bucuresti, 60 p (in Romanian)Google Scholar
  100. Moţoc M, Mircea S (2005) Unele probleme privind formarea viiturilor şi eroziunea în bazine hidrografice mici (Some problems regarding flash-flood formation and erosion in small catchments). Edit. Cartea Universitară, Bucureşti, 104 p (in Romanian)Google Scholar
  101. Moţoc M, Munteanu St, Băloiu V, Stănescu P, Mihai Gh (1975) Eroziunea solului şi metodele de combatere (Soil erosion and the control methods). Edit. Ceres, Bucureşti, 301 p (in Romanian)Google Scholar
  102. Moţoc M, Taloescu I, Neguţ N (1979a) Estimarea ritmului de dezvoltare a ravenelor (Assessment of the development rate of gullies). Buletinul Informativ ASAS, 8:77–86 (in Romanian)Google Scholar
  103. Moţoc M., Stănescu, P., Taloescu, I., (1979b) Metode de estimare a eroziunii totale şi a eroziunii efuente pe bazine hidrografice mici (Methods for assessing total erosion and sediment delivery within small catchments). Buletinul I.C.P.A., Bucureşti, 38 p (in Romanian)Google Scholar
  104. Moţoc M, Ionita I, Nistor D (1998) Erosion and climatic risk at the wheat and maize crops in the Moldavian Plateau. Rom J Hydrol Water Resour 5(1–2):1–38Google Scholar
  105. Mureşan A (2008) Geomorfodinamica vailor de pe versantul vestic al Muntilor Maramureşului. (Geomorphodynamics of the valleys on the western slope of the Maramureş Mountains). Manuscript PhD thesis, Babeş–Bolyai University, Cluj Napoca (in Romanian)Google Scholar
  106. Naum T (1970) Complexul de modelare nivo-glaciar din masivul Călimanului (Carpaţii Orientali), (The nivo-glacial modeling complex in the Călimani Massif, Eastern Carpathians). Anal Univ Buc–Geogr 19:67–75 (in Romanian)Google Scholar
  107. Niculescu Gh (1965) Munţii Godeanu. Studiu geomorfologic (The Godeanu Mountains. Geomorphological study). Edit. Academiei, Bucureşti, 339 p (in Romanian)Google Scholar
  108. Niculescu Gh, Nedelcu E (1961) Contribuţii la studiul microreliefului crio-nival din zona înaltă a munţilor Retezat, Godeanu–Ţarcu şi Făgăraş–Iezer (Contribution to the study of crio-nival microrelief in the high zone of the Retezat, Godeanu–Ţarcu and Făgăraş–Iezer Mountains). Probleme de Geografie 8:87–121 (in Romanian)Google Scholar
  109. Onac BP (2002) Caves formed within upper Cretaceous skarns at Băiţa, Bihor county, Romania: mineral deposition and speleogenesis. Can Mineral 40:1693–1703CrossRefGoogle Scholar
  110. Orghidan T, Puşcariu V, Bleahu M, Decu V, Rusu T, Bunescu A (1965) Harta regiunilor carstice din România (Map of the karst regions in Romania). Lucrările Institutului de Speologie “Emil Racoviţă” 4:75–104, (in Romanian)Google Scholar
  111. Panin N (1976) Some aspects of fluvial and marin processes in the Danube Delta. Anuarul Institutului de Geologie şi Geofizică 50:149–165Google Scholar
  112. Pascu M (1999) Cercetări privind influenţa regularizării radicale a albiilor de râuri asupra stabilităţii unor construcţii aferente şi a mediului înconjurător – cu referire la bazinul hidrografic al râului Prahova (Research on the influence of radical Riverbeds Channelization on the Stability of Nearby Buildings and Environment – Case Study: Prahova Drainage Basin). Manuscript PhD thesis, “Gh. Asachi” Technical University, Iaşi (in Romanian)Google Scholar
  113. Patriche CV, Căpăţână V, Stoica DL (2006) Aspects regarding soil erosion spatial modeling using the USLE/RUSLE within GIS. Geographia Technica 2:87–97 (in Romanian)Google Scholar
  114. Perşoiu I (2008) Time and space adjustments of Somesu Mic River. Geophysical research abstracts 10, EGU General Assembly, Vienna. EGU2008-A-00826Google Scholar
  115. Perşoiu A, Onac BP, Wynn JG, Bojar A-V, Holmgren K (2011) Stable isotopes behavior during cave ice formation by water freezing in Scarisoara Ice Cave, Romania. J Geophys Res, Atmos 116 (D02111):8 p, doi: 10.1029/2010JD014477
  116. Petts GE, Möller H, Roux AL (eds) (1989) Historical changes of large alluvial rivers in western Europe. Wiley, Chichester/London, pp 323–352Google Scholar
  117. Piest RF, Bradford JM, Wyatt MG (1975) Soil erosion and sediment transport from gullies. ASCE J Hydraul Div 101(1):65–80Google Scholar
  118. Pop O, Surdeanu V, Irimuş I-A, Guitton M (2010) Distribution spatiale des coulées de debris contemporaines dans le Massif du Căliman (Roumanie). Studia Universitatis Babeş-Bolyai, Geographia, Cluj-Napoca 55(1):33–44Google Scholar
  119. Posea Gr, Ielenicz M (1970) Alunecările de teren de pe Valea Buzăului (sectorul montan) (Landslides along the Buzău Valley (mountain sector)). Analele Universităţii Bucureşti, Geografie: 59–66 (in Romanian)Google Scholar
  120. Posea G, Ielenicz M (1976) Types de glissements dans les Carpathes de la courbe (Bassin du Buzău). Revue Roumaine Géol Géophys Géogr, série Géographie 20:63–72Google Scholar
  121. Pujina D, Ionita, I (1996) Present-day variability and intensity of the sliding processes in the Barlad Tableland. In: Proceedings of international conference on disasters and mitigation Madras, India, pp 4–35Google Scholar
  122. Racoviţă Gh, Moldovan OT, Onac BD (2002) Monografia Carstului din Munţii Pădurea Craiului (The Karst of Padurea Craiului Mountains. Monographic Study). Institutul de Speologie “Emil Racoviţă”, Cluj-Napoca, 263 p (in Romanian with summary in English)Google Scholar
  123. Rădoane N (2002) Geomorfologia bazinelor hidrografice mici (Geomorphology of small catchments). Edit. Universităţii Suceava, Suceava, 255 p (in Romanian)Google Scholar
  124. Rădoane M (2004) Dinamica reliefului în zona lacului Izvoru Muntelui (The Relief Dynamics in the Izvoru Muntelui Reservoir Area). Edit. Universităţii Suceava, Suceava, 218 p (in omanian)Google Scholar
  125. Rădoane M, Rădoane N (1992) Areal distribution of gullies by the grid square method. Case study: Siret and Prut interfluve. Revue Roumaine Géol Géophys Géogr, série Géographie 36:95–98Google Scholar
  126. Rădoane M, Rădoane N (2003a) Morfologia albiei râului Bârlad şi variabilitatea depozitelor actuale (The Bârlad riverbed morphology and variability of current deposits). Revista de Geomorfologie 4–5:85–97Google Scholar
  127. Rădoane N, Rădoane M (2003b) Cercetări geomorfologice pentru evaluarea rolului albiei râului Olteţ ca sursă de aluviuni (Geomorphic research for the assessment of the Olteţ riverbed role as a sediment source). Analele Universităţii “Ştefan cel Mare”, Suceava, Geografie 10(2001):27–35 (in Romanian)Google Scholar
  128. Rădoane M, Rădoane N (2005) Dams, sediment sources and reservoir silting in Romania. Geomorphology 71:217–226CrossRefGoogle Scholar
  129. Rădoane M, Ichim I, Pandi G (1991) Tendinţe actuale în dinamica patului albiilor de râu din Carpaţii Orientali (Present-day trends in the river channels changes in the Eastern Carpathians). Studii şi Cercetări Geol Geofiz Geogr–Geografie 38:21–31 (in Romanian)Google Scholar
  130. Rădoane M, Rădoane N, Ichim I (1995) Gully distribution and development in Moldavia, Romania. Catena 24:127–146CrossRefGoogle Scholar
  131. Rădoane M, Rădoane N, Ichim I (1997) Analiza multivariată a geomorfologiei ravenelor din Podişul Moldovei (Multivariate analysis of the geomorphology of gullies in the Moldavian Plateau). Analele Universităţii “Ştefan cel Mare”, Suceava, pp 19–32 (in Romanian)Google Scholar
  132. Rădoane M, Rădoane N, Dumitriu D (2003) Geomorphological evolution of river longitudinal profiles. Geomorphology 50:293–306CrossRefGoogle Scholar
  133. Rădoane M, Rădoane N, Dumitriu D, Miclăuş C (2008a) Downstream variation in bed sediment size along the East Carpathians Rivers: evidence of the role of sediment sources. Earth Surf Process Landforms 33(5):674–694CrossRefGoogle Scholar
  134. Rădoane M, Rădoane N, Cristea I, Oprea-Gancevici D (2008b) Evaluarea modificărilor contemporane ale albiei râului Prut pe graniţa românească (Assessment of the contemporary changes of the Prut riverbed on the Romanian border). Revista de Geomorfologie 10:57–71 (in Romanian)Google Scholar
  135. Rădoane M, Feier I, Rădoane N, Cristea I, Burdulea A (2008c) Fluvial deposits and environmental history of some large Romanian rivers. Geophysical research abstracts 10, EGU General Assembly, Vienna. EGU 2008 1MO3P-0399Google Scholar
  136. Şandric I (2005) Aplicaţii ale teoriei probabilităţilor condiţionate în geomorfologie (Application of the conditional probability theory in geomorphology). Analele Universităţii Bucureşti 54:83–97 (in Romanian)Google Scholar
  137. Şandric I (2008) Sistem informaţional geografic temporal pentru analiza hazardelor naturale. O abordare bayesiană cu propagare a erorilor (Temporal geographic information system for the analysis of natural hazards. A Bayesian approach with error propagation). Manuscript PhD thesis, University of Bucharest, 243 p (in Romanian)Google Scholar
  138. Şandric I, Chiţu Z (2009) Landslide inventory for the administrative area of Breaza, Curvature Subcarpathians, Romania. J Maps 2009/7:75–86. doi:10.4113/jom.2009.1051 CrossRefGoogle Scholar
  139. Sass O (2006) Determination of the internal structure of alpine talus deposits using different geophysical methods (Lechtaler Alps, Austria). Geomorphology 80:45–58CrossRefGoogle Scholar
  140. Schreiber WE (1974) Das Periglazialrelief des Harghita-Gebirges. Revue Roumaine Géol Géophys Géog, série Géographie 18(2):179–187Google Scholar
  141. Şerban M, Macklin M, Brewer P, Bălteanu D, Bird G (2004) The impact of metal mining activities on the upper Tisa River Basin, Romania, and transboundary river pollution. Studia Geomorphologica Carpatho-Balcanica 38:97–111Google Scholar
  142. Snow RS, Slingerland RL (1987) Mathematical modelling of graded river profiles. Geology 95:15–33CrossRefGoogle Scholar
  143. Surdeanu V (1979) Recherches experimentales de terrain sur les glissements. Studia Geomorphologica Carpatho-Balcanica 15:49–64Google Scholar
  144. Surdeanu V (1987), Studiul alunecărilor de teren din valea mijlocie a Bistriţei (zona munţilor flişului) (The study of landslides from the middle Buzău Valley, area of the flysch mountains). Manuscript PhD thesis, Iaşi, 192 p (in Romanian)Google Scholar
  145. Surdeanu V (1996) La repartition des glissements de terrain dans le Carpates Orientales (zone du flysch). Geografia Fisica e Dinamica Quaternaria 19(2):265–271Google Scholar
  146. Surdeanu V (1998) Geografia terenurilor degradate. I Alunecari de teren (Geography of Degraded Lands. I. Landslides). Edit. Presa Universitară Clujeana, Cluj-Napoca, 274 p (in Romanian)Google Scholar
  147. Surdeanu V, Pop O, Chiaburu M, Dulgheru M, Anghel T (2010) La dendrogéomorphologie appliquee a l’étude des processus geomorphologiques des zones minieres dans le Massif du Calimani (Carpates Orientales, Roumanie). In: Surdeanu V, Stoffel M, Pop O (eds) Dendrogéomorphologie et dendroclimatologie – méthodes de reconstitution des milieux géomorphologiques et climatiques des régions montagneuses. Presa Universitară Clujeană, Cluj-Napoca, pp 107–124Google Scholar
  148. Traci C (1979) Aspecte privind rolul culturilor forestiere în combaterea proceselor de eroziune şi în ameliorarea solului (Aspects regarding forest cultivations in mitigating erosion processes and improving soil). Buletinul Informativ ASAS 8:125–130Google Scholar
  149. Tufescu V (1959) Torenţi de noroi în Vrancea (Mud-torrents in Vrancea). Comunicările Academiei RPR 1:67–72 (in Romanian)Google Scholar
  150. Tufescu V (1964) Typologie des glissements de Roumanie. Revue Roum Géol Géophys Géogr 7:140–147Google Scholar
  151. Tufescu V (1966) Modelarea naturală a reliefului şi eroziunea accelerată (Natural relief modelling and accelerated erosion). Edit. Acad. R.S.R, Bucureşti, pp 155–256 (in Romanian)Google Scholar
  152. Untaru E (1979) Contribuţii la prevenirea alunecărilor de teren din bazinele hidrografice ale Milcovului şi Călnăului prin culturi forestiere de protecţie (Contributions to Landslides Prevention within the Catchments of the Milcov and Câlnău Rivers through Protective Reforestations). Manuscript PhD thesis, ASAS, Bucharest (in Romanian)Google Scholar
  153. Urdea P (1991) Rock glaciers and other periglacial phenomena in the Southern Carpathians. Analele Universităţii Oradea, Geografie 13–26Google Scholar
  154. Urdea P (1993) Permafrost and periglacial forms in the Romanian Carpathians. In: Proceedings of sixth international conference on Permafrost, Beijing, 5–9 July 1993, South China University of Technology Press 1, pp 631–637Google Scholar
  155. Urdea P (1995) Quelques considérations concernant des formations de pente dans les Carpates Méridionales. Permafr Periglac Process 6:195–206CrossRefGoogle Scholar
  156. Urdea P (1998a) Rock glaciers and permafrost reconstruction in the Southern Carpathians Mountains, Romania. Permafrost. In: Seventh international conference proceedings, Yellowknife, Canada, University Laval, Collection Nordicana 57, pp 1063–1069Google Scholar
  157. Urdea P (1998b) Consideraţii dendrogeomorfologice preliminare asupra unor forme periglaciare din Munţii Retezat (Preliminary dendrogeomorphic considerations on some periglacial forms in the Retezat Mountains). Analele Universităţii Craiova, Geografie, Serie nouă 1:41–45 (in Romanian)Google Scholar
  158. Urdea P (2000) Un permafrost de altitudine joasă la Detunata Goală (Munţii Apuseni). (A low elevation permafrost at Detunata Goală, Apuseni Mountains). Revista de Geomorfologie 2:173–178 (in Romanian)Google Scholar
  159. Urdea P, Sîrbovan C (1995) Some considerations concerning morphoclimatic conditions of the Romanian Carpathians. Acta Climatologica Szegediensis 28–29:23–40Google Scholar
  160. Urdea P, Török-Oance M, Ardelean M, Vuia F (2001–2002) Aplicaţii ale S.I.G. în investigarea permafrostului sporadic de la Detunata Goală (Munţii Apuseni). (GIS-applications in investigating sporadic permafrost at Detunata Goală, Apuseni Mountains). Analele Universităţii Vest Timişoara, Geografie 11–12:7–16 (in Romanian)Google Scholar
  161. Urdea P, Vuia F, Ardelean M, Voiculescu M, Törok-Oance M (2004) Investigations of some present-day geomorphological processes in the alpine area of the Southern Carpathians (Transylvanian Alps). Geomorphologia Slovaca 4(1):5–11Google Scholar
  162. Urdea P, Ardelean F, Onaca A, Ardelean M, Törok-Oance M (2008a) Application of DC resistivity tomography in the alpine area of Southern Carpathians (Romania). In: Kane DL, Hinkel K (eds) Ninth International conference on Permafrost, Institute of Northern Engineering, University of Alaska, Fairbanks, pp 323–333Google Scholar
  163. Urdea P, Ardelean F, Onaca A, Ardelean M (2008b) Deep-seated landslides (glimee) in the Saschiz and Şoard-Seciunei area. Geophysical investigations. In: Bălteanu D (ed) IAG Regional conference on geomorphology “Landslides, floods and global environmental change in mountain regions”. Field Guide. University Publishing House, Bucureşti, pp 32–33Google Scholar
  164. Urdea P, Törok-Oance M, Ardelean F, Onaca A, Ardelean M, Voiculescu M (2008c) The Făgăraş Mountains: Bâlea-Capra area. In: Bălteanu D (ed), IAG Regional conference on geomorphology “Landslides, floods and global environmental change in mountain regions”. Field Guide. University Publishing House, Bucureşti, pp 42–48Google Scholar
  165. Urdea P, Ardelean M, Onaca A, Ardelean F (2008d) An outlook on periglacial of the Romanian Carpathians. Analele Universităţii Vest Timişoara, Geografie 18:5–28Google Scholar
  166. Voiculescu M (2009) Snow avalanche hazards in the Făgăraş massif (Southern Carpathians) – Romanian Carpathians. Management and perspectives. Nat Hazards 51:459–475CrossRefGoogle Scholar
  167. Voiculescu M, Popescu F (2011) Management of Snow Avalanche Risk in the Ski Areas of the Southern Carpathians – Romanian Carpathians. Case Study: The Bâlea (Făgăraş Massif) and Sinaia (Bucegi Mountains) Ski Areas. In: Zhelezov G (ed) Sustainable development in mountain regions, southern Europe. Springer, Heidelberg/Berlin, pp 103–122CrossRefGoogle Scholar
  168. Zugrăvescu D, Polonic G, Horomnea M, Dragomir V (1998) Recent vertical crustal movements on the Romanian territory, major tectonic compartments and their relative dynamics. Revue Roumaine Géol Géophys Géogr, série Géographie 42:3–14 (in Romanian)Google Scholar
  169. (1983) Geografia României I. Geografia Fizică (Geography of Romania, I. Physical Geography). Edit. Academiei, Bucureşti, pp 171–194 (in Romanian)Google Scholar
  170. (2006) Romania. Space, society, environment. Publishing House of the Romanian Academy, Bucharest, pp 60–81Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dan Bălteanu
    • 1
  • Marta Jurchescu
    • 1
  • Virgil Surdeanu
    • 2
  • Ion Ionita
    • 3
  • Cristian Goran
    • 4
  • Petru Urdea
    • 5
  • Maria Rădoane
    • 6
  • Nicolae Rădoane
    • 6
  • Mihaela Sima
    • 1
  1. 1.Institute of GeographyRomanian AcademyBucharestRomania
  2. 2.Faculty of GeographyBabeş-Bolyai University of Cluj-NapocaCluj-NapocaRomania
  3. 3.Department of Geography“Alexandru Ioan Cuza” University of IasiIasiRomania
  4. 4.“Emil Racoviţă” Institute of SpeleologyRomanian AcademyBucharestRomania
  5. 5.Department of Geography, Faculty of Chemistry, Biology and GeographyWest University of TimişoaraTimişoaraRomania
  6. 6.Faculty of History and Geography“Ştefan cel Mare” University of SuceavaSuceavaRomania

Personalised recommendations