Neonatal Hypoxic-Ischemic Encephalopathy: Neural Stem/Progenitor Cell Transplantation

  • Pedro Moreno Pimentel-CoelhoEmail author
  • Rosalia Mendez-Otero
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 3)


Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of long-term neurological sequels in term and late preterm infants. Currently, although therapeutic hypothermia is becoming a standard therapy for HIE, modestly improving the outcome of the treated children, new treatments that might increase the benefits provided by this therapy are sorely needed. Neural stem/progenitor cell (NSPC) transplantation represents a promising option for the treatment of several neurological disorders, combining different mechanisms of action in the brain, including neuroprotection, immunomodulation and neuronal replacement. In this chapter we will discuss preclinical studies that have assessed the potential of endogenous and transplanted NSPC to migrate to damaged areas in the hypoxic-ischemic brain, differentiating into neural cells and improving cognitive and motor functions. Translational aspects of NSCP transplantation in HIE will also be discussed.


HIE NSPC Transplantation HI HUCB MRI 


  1. Bain JM, Ziegler A, Yang Z, Levison SW, Sen E (2010) TGFbeta1 stimulates the over-production of white matter astrocytes from precursors of the “brain marrow” in a rodent model of neonatal encephalopathy. PLoS One 5:e9567PubMedCrossRefGoogle Scholar
  2. Bystron I,, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122PubMedCrossRefGoogle Scholar
  3. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41:516–523PubMedCrossRefGoogle Scholar
  4. Dayer AG, Jenny B, Sauvain MO, Potter G, Salmon P, Zgraggen E, Kanemitsu M, Gascon E, Sizonenko S, Trono D, Kiss JZ (2007) Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex. Brain 130:2962–2976PubMedCrossRefGoogle Scholar
  5. de Vries LS, Jongmans MJ (2010) Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 95:F220–224PubMedCrossRefGoogle Scholar
  6. Elsayed MH, Hogan TP, Shaw PL, Castro AJ (1996) Use of fetal cortical grafts in hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 137:127–141PubMedCrossRefGoogle Scholar
  7. Fernández-López D, Pradillo JM, García-Yébenes I, Martínez-Orgado JA, Moro MA, Lizasoain I (2011) The cannabinoid WIN55212-2 promotes neural repair after neonatal hypoxia-ischemia. Stroke 41:2956–2964CrossRefGoogle Scholar
  8. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN, Gaillard A, Vanderhaeghen P (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–357PubMedCrossRefGoogle Scholar
  9. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomsom JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340PubMedCrossRefGoogle Scholar
  10. Im SH, Yu JH, Park ES, Lee JE, Kim HO, Park KI, Kim GW, Park CI, Cho SR (2010) Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 169:259–268PubMedCrossRefGoogle Scholar
  11. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122PubMedCrossRefGoogle Scholar
  12. Jansen EM, Solberg L, Underhill S, Wilson S, Cozzari C, Hartman BK, Faris PL, Low WC (1997) Transplantation of fetal neocortex ameliorates sensorimotor and locomotor deficits following neonatal ischemic-hypoxic brain injury in rats. Exp Neurol 147:487–497PubMedCrossRefGoogle Scholar
  13. Jin-qiao S, Bin S, Wen-hao Z, Yi Y (2009) Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury. Brain Dev 31:331–340PubMedCrossRefGoogle Scholar
  14. Jozwiak S, Habich A, Kotulska K, Sarnowska A, Kropiwnicki T, Janowski M, Jurkiewicz E, Lukomska B, Kmiec T, Walecki J, Roszkowski M, Litwin M, Oldak T, Boruczkowski D, Domanska-Janik K (2010) Intracerebroventricular transplantation of cord blood-derived neural progenitors in a child with severe global brain ischemic injury. Cell Med Part B of Cell Transplant 1:71–80Google Scholar
  15. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30:1657–1676PubMedCrossRefGoogle Scholar
  16. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86:329–338PubMedCrossRefGoogle Scholar
  17. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629PubMedCrossRefGoogle Scholar
  18. Ma J, Wang Y, Yang J, Yang M, Chang KA, Zhang L, Jiang F, Li Y, Zhang Z, Heo C, Suh YH (2007) Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells. Neurochem Int 51:57–65PubMedCrossRefGoogle Scholar
  19. Martinez-Biarge M, Diez-Sebastian J, Rutherford MA, Cowan FM (2010) Outcomes after central grey matter injury in term perinatal hypoxic-ischaemic encephalopathy. Early Hum Dev 86:675–682PubMedCrossRefGoogle Scholar
  20. Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, Carroll JE (2005) The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci 6:63PubMedCrossRefGoogle Scholar
  21. Obenaus A, Dilmac N, Tone B, Tian HR, Hartman R, Digicaylioglu M, Snyder EY, Ashwal S (2011) Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol 69:282–291PubMedCrossRefGoogle Scholar
  22. Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117PubMedCrossRefGoogle Scholar
  23. Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V, Snyder EY (2006a) Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal “reporter” neural stem cells. Exp Neurol 199:156–178PubMedCrossRefGoogle Scholar
  24. Park KI, Himes BT, Stieg PE, Tessler A, Fischer I, Snyder EY (2006b) Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp Neurol 199:179–190PubMedCrossRefGoogle Scholar
  25. Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, De A, Choi R, Chen S, Rutt BK, Gambhir SS, Guzman R (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41:2064–2070PubMedCrossRefGoogle Scholar
  26. Sato Y, Nakanishi K, Hayakawa M, Kakizawa H, Saito A, Kuroda Y, Ida M, Tokita Y, Aono S, Matsui F, Kojima S, Oohira A (2008) Reduction of brain injury in neonatal hypoxic-ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together with chondroitinase ABC. Reprod Sci 15(6):613–620PubMedCrossRefGoogle Scholar
  27. Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A, Struve J, Sherman LS, Back SA (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530PubMedCrossRefGoogle Scholar
  28. Sirko S, von Holst A, Wizenmann A, Götz M, Faissner A (2007) Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134(15):2727–2738PubMedCrossRefGoogle Scholar
  29. Sizonenko SV, Camm EJ, Dayer A, Kiss JZ (2008) Glial responses to neonatal hypoxic-ischemic injury in the rat cerebral cortex. Int J Dev Neurosci 26:37–45PubMedCrossRefGoogle Scholar
  30. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025PubMedCrossRefGoogle Scholar
  31. Wei B, Nie Y, Li X, Wang C, Ma T, Huang Z, Tian M, Sun C, Cai Y, You Y, Liu F, Yang Z (2011) Emx1-expressing neural stem cells in the subventricular zone give rise to new interneurons in the ischemic injured striatum. Eur J Neurosci 33:819–830PubMedCrossRefGoogle Scholar
  32. Xiong T, Qu Y, Mu D, Ferriero D (2011) Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci (in press)Google Scholar
  33. Yang Z, Covey MV, Bitel CL, Ni L, Jonakait GM, Levison SW (2007) Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. Ann Neurol 61:199–208PubMedCrossRefGoogle Scholar
  34. Yang Z, You Y, Levison SW (2008) Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol 511:19–33PubMedCrossRefGoogle Scholar
  35. Zheng T, Rossignol C, Leibovici A, Anderson KJ, Steindler DA, Weiss MD (2006) Transplantation of multipotent astrocytic stem cells into a rat model of neonatal hypoxic-ischemic encephalopathy. Brain Res 1112:99–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Pedro Moreno Pimentel-Coelho
    • 1
    Email author
  • Rosalia Mendez-Otero
    • 1
  1. 1.Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, UFRJRio de JaneiroBrazil

Personalised recommendations