Advertisement

Eddy Covariance Measurements over Grasslands

  • Georg WohlfahrtEmail author
  • Katja Klumpp
  • Jean-François Soussana
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

In this chapter we first provide a historic overview of – and outline some of the peculiarities associated with – grassland eddy covariance flux measurements, elaborate on the additional terms that need to be quantified when estimating the grassland net ecosystem carbon balance and finally discuss some of the challenges associated with upcoming nitrous oxide and methane flux measurements in managed grasslands.

Keywords

Flux Measurement Eddy Covariance Eddy Covariance Method Footprint Model Tropical Grassland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors acknowledge financial support by the EU (FP 5, 6 and 7) as well as Austrian and French National Science fund, the Tyrolean Science fund, the Austrian Academy of Sciences, the Österreichische Forschungsgemeinschaft and the help of numerous persons who have helped in keeping the eddy covariance flux measurements going over the years.

References

  1. Allard V, Soussana JF, Falcimagne R (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric Ecosyst Environ 121:47–58CrossRefGoogle Scholar
  2. Ammann C, Flechard CR, Leifeld J et al (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ 121:5–20CrossRefGoogle Scholar
  3. Arrouays D, Jolivet CI, Boulonne L et al (2003) Le Réseau de Mesures de la Qualité des Sols (RMQS) de France. Étude et Gestion des Sols 10:241–250Google Scholar
  4. Baldocchi DD, Falge E, Gu L et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Am Meteorol Soc 82:2415–2435CrossRefGoogle Scholar
  5. Cernusca A, Bahn M, Berninger F et al (2008) Preface to CarboMont special feature: effects of land-use changes on sources, sinks and fluxes of carbon in European mountain grasslands. Ecosystems 11:1335–1337CrossRefGoogle Scholar
  6. Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355CrossRefGoogle Scholar
  7. Davison B, Brunner A, Ammann C, Spirig C (2008) Cut-induced VOC emissions from agricultural grasslands. Plant Biol 10:76–85CrossRefGoogle Scholar
  8. Delany AC, Fitzjarrald DR, Lenschow DH et al (1986) Direct measurement of nitrogen oxides and ozone fluxes over grassland. J Atmos Chem 4:429–444CrossRefGoogle Scholar
  9. Eugster W, Zeyer K, Zeeman M (2007) Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometry over a Swiss forest. Biogeosciences 4:927–939CrossRefGoogle Scholar
  10. Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69CrossRefGoogle Scholar
  11. Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Change Biol 8:599–615CrossRefGoogle Scholar
  12. Flechard CR, Neftel A, Jocher M et al (2005) Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Glob Change Biol 11:2114–2127CrossRefGoogle Scholar
  13. Gilmanov T, Soussana JF, Aires L et al (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120CrossRefGoogle Scholar
  14. Gilmanov TG, Aires L, Barcza Z et al (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangel Ecol Manage 63:16–39CrossRefGoogle Scholar
  15. Hammerle A, Haslwanter A, Tappeiner U et al (2008) Leaf area controls on energy partitioning of a temperate mountain grassland. Biogeosciences 5:421–431CrossRefGoogle Scholar
  16. Hendriks DMD, Dolman AJ, Van der Molen MK et al (2008) A compact and stable eddy co-variance set-up for methane measurements using off-axis integrated cavity output spectroscopy. Atmos Chem Phys 8:1–13CrossRefGoogle Scholar
  17. Hsieh CI, Katul G, Chi TW (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRefGoogle Scholar
  18. Hunt JE, Kelliher FM, McSeveny TM, Ross DJ et al (2004) Long-term carbon exchange in a sparse, seasonally dry tussock grassland. Glob Change Biol 10:1785–1800CrossRefGoogle Scholar
  19. Janssens IA, Freibauer A, Ciais P et al (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–1542CrossRefGoogle Scholar
  20. Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res 113:G03013. doi: 10.1029/2007JG000680 CrossRefGoogle Scholar
  21. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Oxford University Press, Oxford, 289 ppGoogle Scholar
  22. Kato T, Tang Y, Gu S, Cui X et al (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agric For Meteorol 124:121–134CrossRefGoogle Scholar
  23. Kim J, Verma SB (1990) Components of surface energy balance in a temperate grassland ecosystem. Bound Layer Meteorol 51:401–417CrossRefGoogle Scholar
  24. Kroon PS, Hensen A, Jonker HJJ et al (2007) Suitability of quantum cascade spectroscopy for CH4 and N2O eddy co-variance flux measurements. Biogeosciences 4:715–728CrossRefGoogle Scholar
  25. Kroon PS, Hensen A, Jonker HJJ et al (2009) Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O Observation. Agric For Meteorol. doi: 10.1016/j.agrformet.2009.08.008
  26. Laville P, Jambert C, Cellier P (1999) Nitrous oxide fluxes from a fertilized maize crop using micrometeorological and chamber methods. Agric For Meteorol 96:19–38CrossRefGoogle Scholar
  27. Leahy P, Kiely G, Scanlon TM (2004) Managed grasslands: a greenhouse gas sink or source? Geophys Res Lett 31:L20507. doi: 10.1029/2004GL021161 CrossRefGoogle Scholar
  28. Lemaire G, Chapman D (1996) Tissue flows in grazed plant communities. In: Hodgson J, Illius AW (eds) The ecology and management of grazing systems. CABI, WallingfordGoogle Scholar
  29. Li S-G, Asanuma J, Eugster W (2005) Net ecosystem carbon dioxide exchange over grazed steppe in Mongolia. Glob Change Biol 11:1941–1955CrossRefGoogle Scholar
  30. Marcolla B, Cescatti A (2005) Experimental analysis of flux footprint for varying stability conditions in an alpine meadow. Agric For Meteorol 135:291–301CrossRefGoogle Scholar
  31. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198CrossRefGoogle Scholar
  32. Meyers T (2001) A comparison of summertime water and CO2 fluxes over rangeland for well-watered and drought conditions. Agric For Meteorol 104:185–198Google Scholar
  33. Neftel A, Flechard C, Ammann C (2007) Experimental assessment of N2O background fluxes in grassland systems. Tellus B 59:470–482CrossRefGoogle Scholar
  34. Nelson DD, Shorter JH, McManus JB (2002) Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl Phys B 75:343–350CrossRefGoogle Scholar
  35. Novick KA, Stoy PC, Katul GG, Ellsworth DS, Siqueira MBS, Juang J, Oren R (2004) Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138:259–274CrossRefGoogle Scholar
  36. Pinares-Patiño CS, Dhour P, Jouany JP (2007) Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric Ecosyst Environ 121:30–46CrossRefGoogle Scholar
  37. Ruuskanen TM, Müller M, Schnitzhofer R, Karl T, Graus M, Bamberger I, Hörtnagl L, Brilli F, Wohlfahrt G, Hansel A (2011) Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF. Atmos Chem Phys 11:611–625CrossRefGoogle Scholar
  38. Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113:159–183CrossRefGoogle Scholar
  39. Schmitt M, Bahn M, Wohlfahrt G, Tappeiner U, Cernusca A (2010) Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences 7:2297–2309CrossRefGoogle Scholar
  40. Schulze ED, Ciais P, Luyssaert S et al (2009) The greenhouse gas balance of Europe: methane and nitrous oxide compensate the carbon sink of EU-25. Nat Geosci 2:842–850CrossRefGoogle Scholar
  41. Siemens J, Janssens IA (2003) The European carbon budget: a gap. Science 302:1681CrossRefGoogle Scholar
  42. Smeets CJPP, Holzinger R, Vigano R et al (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9:8365–8375CrossRefGoogle Scholar
  43. Smith KA, Clayton H, Arah JRM et al (2001) Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theor Appl Climatol 70:203–213CrossRefGoogle Scholar
  44. Soussana JF, Allard V, Pilegaard K et al (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–134CrossRefGoogle Scholar
  45. Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350CrossRefGoogle Scholar
  46. Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Change Biol 7:279–289CrossRefGoogle Scholar
  47. Swinbank WC (1951) The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol 8:135–145CrossRefGoogle Scholar
  48. Van der Werf GR, Randerson JT, Giglio L et al (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441CrossRefGoogle Scholar
  49. Van Oost K, Quine TA, Govers G et al (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629CrossRefGoogle Scholar
  50. Verma SB, Kim J, Clement RJ (1989) Carbon dioxide, water vapor and sensible heat fluxes over a tallgrass prairie. Bound Layer Meteorol 46:53–67CrossRefGoogle Scholar
  51. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  52. Viviroli D, Dürr HD, Messerli B et al (2007) Mountains of the world, water towers for humanity: typology, mapping and global significance. Water Resour Res 43:W07447. doi: 10.2029/2006WR005653 CrossRefGoogle Scholar
  53. Werle P, Kormann R (2001) Fast chemical sensor for eddy correlation measurements of methane emissions from rice paddy fields. Appl Opt 40:846–858CrossRefGoogle Scholar
  54. Wienhold FG, Klemedtsson L, Galle B (1994) Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere: overview and conclusions. J Geophys Res 99:541–548CrossRefGoogle Scholar
  55. Wienhold FG, Welling M, Harris GW (1995) Micrometeorological measurement and source region analysis of nitrous oxide fluxes from an agricultural soil. Atmos Environ 29:2219–2227CrossRefGoogle Scholar
  56. Wohlfahrt G, Sapinsky S, Tappeiner U, Cernusca A (2001) Estimation of plant area index of grasslands from measurements of canopy radiation profiles. Agric For Meteorol 109:1–12CrossRefGoogle Scholar
  57. Wohlfahrt G, Anfang Ch, Bahn M et al (2005) Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agric For Meteorol 128:141–162CrossRefGoogle Scholar
  58. Wohlfahrt G, Anderson-Dunn M, Bahn M et al (2008a) Biotic, abiotic and management controls on the net ecosystem CO2 exchange of European mountain grasslands. Ecosystems 11:1338–1351CrossRefGoogle Scholar
  59. Wohlfahrt G, Hammerle A, Haslwanter A et al (2008b) Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of weather and management. J Geophys Res 113:D08110. doi: 10.1029/2007JD009286 CrossRefGoogle Scholar
  60. Wohlfahrt G, Pilloni S, Hörtnagl L, Hammerle A (2010) Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices. Biogeosciences 7: 683–694CrossRefGoogle Scholar
  61. Zeller K, Massman W, Stocker D et al (1989) Initial results from the Pawnee eddy correlation system for dry acid deposition research, USDA Forest Service Research Paper RM-282. U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort CollinsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Georg Wohlfahrt
    • 1
    Email author
  • Katja Klumpp
    • 2
  • Jean-François Soussana
    • 2
  1. 1.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  2. 2.INRA, Grassland Ecosystem Research (UREP)Clermont-FerrandFrance

Personalised recommendations