Vitamin C in Sepsis

Part of the Subcellular Biochemistry book series (SCBI, volume 56)


Bacterial bloodstream infection causes septic syndromes that range from systemic inflammatory response syndrome (SIRS) and encephalopathy to severe sepsis and septic shock. Microvascular dysfunction, comprising impaired capillary blood flow and arteriolar responsiveness, precedes multiple organ failure. Vitamin C (ascorbate) levels are low in critically ill patients. The impact of ascorbate administered orally is moderate because of its limited bioavailability. However, intravenous injection of ascorbate raises plasma and tissue concentrations of the vitamin and may decrease morbidity. In animal models of polymicrobial sepsis, intravenous ascorbate injection restores microvascular function and increases survival. The protection of capillary blood flow and arteriolar responsiveness by ascorbate may be mediated by inhibition of oxidative stress, modulation of intracellular signaling pathways, and maintenance of homeostatic levels of nitric oxide. Ascorbate scavenges reactive oxygen species (ROS) and also inhibits the NADPH oxidase that synthesizes superoxide in microvascular endothelial cells. The resulting changes in redox-sensitive signaling pathways may diminish endothelial expression of inducible nitric oxide synthase (iNOS), tissue factor and adhesion molecules. Ascorbate also regulates nitric oxide concentration by releasing nitric oxide from adducts and by acting through tetrahydrobiopterin (BH4) to stimulate endothelial nitric oxide synthase (eNOS). Therefore, it may be possible to improve microvascular function in sepsis by using intravenous vitamin C as an adjunct therapy.


Adjuvant therapy Ascorbic acid Bacteremia Blood pressure Brain Capillary blood flow Critical illness Dehydroascorbic acid Endothelial cells Endotoxin Infection Inflammation Microvascular function Sepsis Vitamin C 


  1. Ardanaz N, Pagano PJ (2006) Hydrogen peroxide as a paracrine vascular mediator: Regulation and signaling leading to dysfunction. Exp Biol Med (Maywood) 231:237–251Google Scholar
  2. Armour J, Tyml K, Lidington D, Wilson JX (2001) Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol 90:795–803PubMedGoogle Scholar
  3. Bailey DM, Raman S, McEneny J, Young IS, Parham KL, Hullin DA, Davies B, McKeeman G, McCord JM, Lewis MH (2006) Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion. Free Radic Biol Med 40:591–600PubMedCrossRefGoogle Scholar
  4. Baines M, Shenkin A (2002) Lack of effectiveness of short-term intravenous micronutrient nutrition in restoring plasma antioxidant status after surgery. Clin Nutr 21:145–150PubMedCrossRefGoogle Scholar
  5. Bateman RM, Jagger JE, Sharpe MD, Ellsworth ML, Mehta S, Ellis CG (2001) Erythrocyte deformability is a nitric oxide-mediated factor in decreased capillary density during sepsis. Am J Physiol Heart Circ Physiol 280:H2848–H2856PubMedGoogle Scholar
  6. Borrelli E, Roux-Lombard P, Grau GE, Girardin E, Ricou B, Dayer J, Suter PM (1996) Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med 24:392–397PubMedCrossRefGoogle Scholar
  7. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36PubMedCrossRefGoogle Scholar
  8. Carr AC, Frei B (2002) Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. J Biol Chem 383:627–636CrossRefGoogle Scholar
  9. Cerwinka WH, Cooper D, Krieglstein CF, Feelisch M, Granger DN (2002) Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol 282:H1111–H1117PubMedGoogle Scholar
  10. Cerwinka WH, Cooper D, Krieglstein CF, Ross CR, McCord JM, Granger DN (2003) Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol 284:H535–H541PubMedGoogle Scholar
  11. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 102:13604–13609PubMedCrossRefGoogle Scholar
  12. Chmiel B, Grabowska-Bochenek R, Piskorska D (2001) Tirilazad mesylate improve water immersion stress induced decrease in erythrocyte deformability in the rats. Med Sci Monit 7:38–41PubMedGoogle Scholar
  13. Crimi E, Liguori A, Condorelli M, Cioffi M, Astuto M, Bontempo P, Pignalosa O, Vietri MT, Molinari AM, Sica V, Della Corte F, Napoli C (2004) The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth Analg 99:857–863PubMedCrossRefGoogle Scholar
  14. De la Fuente M, Victor VM (2001) Ascorbic acid and N-acetylcysteine improve in vitro the function of lymphocytes from mice with endotoxin-induced oxidative stress. Free Radic Res 35:73–84PubMedCrossRefGoogle Scholar
  15. De Tata V, Brizzi S, Saviozzi M, Lazzarotti A, Fierabracci V, Malvaldi G, Casini A (2005) Protective role of dehydroascorbate in rat liver ischemia-reperfusion injury. J Surg Res 123:215–221PubMedCrossRefGoogle Scholar
  16. Dupertuis YM, Ramseyer S, Fathi M, Pichard C (2005) Assessment of ascorbic acid stability in different multilayered parenteral nutrition bags: critical influence of the bag wall material. JPEN J Parenter Enteral Nutr 29:125–130PubMedCrossRefGoogle Scholar
  17. Dwenger A, Pape HC, Bantel C, Schweitzer G, Krumm K, Grotz M, Lueken B, Funck M, Regel G (1994) Ascorbic acid reduces the endotoxin-induced lung injury in awake sheep. Eur J Clin Invest 24:229–235PubMedCrossRefGoogle Scholar
  18. Ellis GR, Anderson RA, Lang D, Blackman DJ, Morris RH, Morris-Thurgood J, McDowell IF, Jackson SK, Lewis MJ, Frenneaux MP (2000) Neutrophil superoxide anion–generating capacity, endothelial function and oxidative stress in chronic heart failure: effects of short- and long-term vitamin C therapy. J Am Coll Cardiol 36:1474–1482PubMedCrossRefGoogle Scholar
  19. Eskurza I, Monahan KD, Robinson JA, Seals DR (2004) Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J Physiol 556:315–324PubMedCrossRefGoogle Scholar
  20. Fan J, Frey RS, Rahman A, Malik AB (2002) Role of neutrophil NADPH oxidase in the mechanism of tumor necrosis factor-alpha -induced NF-kappa B activation and intercellular adhesion molecule-1 expression in endothelial cells. J Biol Chem 277:3404–3411PubMedCrossRefGoogle Scholar
  21. Ferlitsch A, Pleiner J, Mittermayer F, Schaller G, Homoncik M, Peck-Radosavljevic M, Wolzt M (2005) Vasoconstrictor hyporeactivity can be reversed by antioxidants in patients with advanced alcoholic cirrhosis of the liver and ascites. Crit Care Med 33:2028–2033PubMedCrossRefGoogle Scholar
  22. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714PubMedCrossRefGoogle Scholar
  23. Galley HF, Davies MJ, Webster NR (1996) Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit Care Med 24:1649–1653PubMedCrossRefGoogle Scholar
  24. Gaut JP, Belaaouaj A, Byun J, Roberts LJ 2nd, Maeda N, Frei B, Heinecke JW (2006) Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation. Free Radic Biol Med 40:1494–1501PubMedCrossRefGoogle Scholar
  25. Goldman D, Bateman RM, Ellis CG (2004) Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model. Am J Physiol Heart Circ Physiol 287:H2535–H2544PubMedCrossRefGoogle Scholar
  26. Goyal P, Weissmann N, Grimminger F, Hegel C, Bader L, Rose F, Fink L, Ghofrani HA, Schermuly RT, Schmidt HH, Seeger W, Hanze J (2004) Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 36:1279–1288PubMedCrossRefGoogle Scholar
  27. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183PubMedCrossRefGoogle Scholar
  28. Guaiquil VH, Golde DW, Beckles DL, Mascareno EJ, Siddiqui MA (2004) Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radic Biol Med 37:1419–1429PubMedCrossRefGoogle Scholar
  29. Hathcock JN, Azzi A, Blumberg J, Bray T, Dickinson A, Frei B, Jialal I, Johnston CS, Kelly FJ, Kraemer K, Packer L, Parthasarathy S, Sies H, Traber MG (2005) Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr 81:736–745PubMedGoogle Scholar
  30. Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ, Mocco J, Pinsky DJ, Fox WD, Israel RJ, Boyd TA, Golde DW, Connolly ES Jr (2001) Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724PubMedCrossRefGoogle Scholar
  31. Jackson TS, Xu A, Vita JA, Keaney JF Jr (1998) Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res 83:916–922PubMedGoogle Scholar
  32. Jacobi J, Kristal B, Chezar J, Shaul SM, Sela S (2005) Exogenous superoxide mediates pro-oxidative, proinflammatory, and procoagulatory changes in primary endothelial cell cultures. Free Radic Biol Med 39:1238–1248PubMedCrossRefGoogle Scholar
  33. Kim JY, Lee SM (2004) Effect of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis. Life Sci 75:2015–2026PubMedCrossRefGoogle Scholar
  34. Kim HJ, Lee SI, Lee DH, Smith D, Jo H, Schellhorn HE, Boo YC (2006) Ascorbic acid synthesis due to L-gulono-1,4-lactone oxidase expression enhances NO production in endothelial cells. Biochem Biophys Res Commun 345:1657–1662PubMedCrossRefGoogle Scholar
  35. Knafo L, Chessex P, Rouleau T, Lavoie JC (2005) Association between hydrogen peroxide-dependent byproducts of ascorbic acid and increased hepatic acetyl-CoA carboxylase activity. Clin Chem 51:1462–1471PubMedCrossRefGoogle Scholar
  36. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ (2003) Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63:1764–1768PubMedGoogle Scholar
  37. Korcok J, Wu F, Tyml K, Hammond RR, Wilson JX (2002) Sepsis inhibits reduction of dehydroascorbic acid and accumulation of ascorbate in astroglial cultures: Intracellular ascorbate depletion increases nitric oxide synthase induction and glutamate uptake inhibition. J Neurochem 81:185–193PubMedCrossRefGoogle Scholar
  38. Korcok J, Dixon SJ, Lo TC, Wilson JX (2003) Differential effects of glucose on dehydroascorbic acid transport and intracellular ascorbate accumulation in astrocytes and skeletal myocytes. Brain Res 993:201–207PubMedCrossRefGoogle Scholar
  39. Kuo SM, Tan CH, Dragan M, Wilson JX (2005) Endotoxin increases ascorbate recycling and concentration in mouse liver. J Nutr 135:2411–2416PubMedGoogle Scholar
  40. Laborie S, Lavoie JC, Rouleau T, Chessex P (2002) Multivitamin solutions for enteral supplementation: A source of peroxides. Nutrition 18:470–473PubMedCrossRefGoogle Scholar
  41. Laudes IJ, Chu JC, Sikranth S, Huber-Lang M, Guo RF, Riedemann N, Sarma JV, Schmaier AH, Ward PA (2002) Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am J Pathol 160:1867–1875PubMedCrossRefGoogle Scholar
  42. Li JM, Shah AM. (2004) Endothelial cell superoxide generation: Regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030PubMedCrossRefGoogle Scholar
  43. Li JM, Fan LM, Christie MR, Shah AM (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: Role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25:2320–2330PubMedCrossRefGoogle Scholar
  44. Long CL, Maull KI, Krishnan RS, Laws HL, Geiger JW, Borghesi L, Franks W, Lawson TC, Sauberlich HE (2003) Ascorbic acid dynamics in the seriously ill and injured. J Surg Res 109:144–148PubMedCrossRefGoogle Scholar
  45. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30PubMedCrossRefGoogle Scholar
  46. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939PubMedCrossRefGoogle Scholar
  47. Mack WJ, Mocco J, Ducruet AF, Laufer I, King RG, Zhang Y, Guo W, Pinsky DJ, Connolly ES Jr (2006) A cerebroprotective dose of intravenous citrate/sorbitol-stabilized dehydroascorbic acid is correlated with increased cerebral ascorbic acid and inhibited lipid peroxidation after murine reperfused stroke. Neurosurgery 59:383–388PubMedCrossRefGoogle Scholar
  48. May JM (2000) How does ascorbic acid prevent endothelial dysfunction? Free Radic Biol Med 28:1421–1429PubMedCrossRefGoogle Scholar
  49. May JM, Huang J, Qu ZC (2005) Macrophage uptake and recycling of ascorbic acid: response to activation by lipopolysaccharide. Free Radic Biol Med 39:1449–1459PubMedCrossRefGoogle Scholar
  50. McErlain L, Marson H, Ainsworth P, Burnett SA (2001) Ascorbic acid loss in vegetables: adequacy of a hospital cook-chill system. Int J Food Sci Nutr 52:205–211PubMedGoogle Scholar
  51. Merx MW, Liehn EA, Graf J, van de Sandt A, Schaltenbrand M, Schrader J, Hanrath P, Weber C (2005) Statin treatment after onset of sepsis in a murine model improves survival. Circulation 112:117–124PubMedCrossRefGoogle Scholar
  52. Metnitz PG, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W (1999) Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med 25:180–185PubMedCrossRefGoogle Scholar
  53. Mittermayer F, Pleiner J, Schaller G, Zorn S, Namiranian K, Kapiotis S, Bartel G, Wolfrum M, Brugel M, Thiery J, Macallister RJ, Wolzt M (2005) Tetrahydrobiopterin corrects Escherichia coli endotoxin-induced endothelial dysfunction. Am J Physiol Heart Circ Physiol 289:H1752–H1757PubMedCrossRefGoogle Scholar
  54. Miyaji T, Hu X, Yuen PS, Muramatsu Y, Iyer S, Hewitt SM, Star RA (2003) Ethyl pyruvate decreases sepsis-induced acute renal failure and multiple organ damage in aged mice. Kidney Int 64:1620–1631PubMedCrossRefGoogle Scholar
  55. Muhlhofer A, Mrosek S, Schlegel B, Trommer W, Rozario F, Böhles H, Schremmer D, Zoller WG, Biesalski HK (2004) High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr 58:1151–1158PubMedCrossRefGoogle Scholar
  56. Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, Radella F, Garcia I, Maier RV (2002) Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg 236:814–822PubMedCrossRefGoogle Scholar
  57. Ondiveeran HK, Fox-Robichaud AE (2004) Pentastarch in a balanced solution reduces hepatic leukocyte recruitment in early sepsis. Microcirculation 11:679–687PubMedCrossRefGoogle Scholar
  58. Opal SM, Palardy JE, Parejo NA, Creasey AA (2001) The activity of tissue factor pathway inhibitor in experimental models of superantigen-induced shock and polymicrobial intra-abdominal sepsis. Crit Care Med 29:13–17PubMedCrossRefGoogle Scholar
  59. Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA, Levine M (2004) Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 140:533–537PubMedGoogle Scholar
  60. Piper RD, Li FY, Myers ML, Sibbald WJ (1999) Effect of isoproterenol on myocardial structure and function in septic rats. J Appl Physiol 86:993–1001PubMedGoogle Scholar
  61. Pleiner J, Mittermayer F, Schaller G, Marsik C, MacAllister RJ, Wolzt M (2003) Inflammation-induced vasoconstrictor hyporeactivity is caused by oxidative stress. J Am Coll Cardiol 42:1656–1662PubMedCrossRefGoogle Scholar
  62. Rice TW, Bernard GR (2005) Therapeutic intervention and targets for sepsis. Annu Rev Med 56:225–248PubMedCrossRefGoogle Scholar
  63. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy collaborative group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  64. Rosengarten B, Hecht M, Auch D, Ghofrani HA, Schermuly RT, Grimminger F, Kaps M (2006) Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc Dis 23:140–147PubMedCrossRefGoogle Scholar
  65. Rumelin A, Humbert T, Luhker O, Drescher A, Fauth U (2005) Metabolic clearance of the antioxidant ascorbic acid in surgical patients. J Surg Res 129:46–51PubMedCrossRefGoogle Scholar
  66. Russell JA (2006) Management of sepsis. N Engl J Med 355:1699–16713PubMedCrossRefGoogle Scholar
  67. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  68. Salvemini D, Cuzzocrea S (2002) Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radic Biol Med 33:1173–1185PubMedCrossRefGoogle Scholar
  69. Schneider MP, Delles C, Schmidt BM, Oehmer S, Schwarz TK, Schmieder RE, John S (2005) Superoxide scavenging effects of N-acetylcysteine and vitamin C in subjects with essential hypertension. Am J Hypertens 18:1111–1117PubMedCrossRefGoogle Scholar
  70. Schorah CJ, Downing C, Piripitsi A, Gallivan L, Al-Hazaa AH, Sanderson MJ, Bodenham A (1996) Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr 63:760–765PubMedGoogle Scholar
  71. Secor D, Li F, Ellis CG, Sharpe MD, Gross PL, Wilson JX, Tyml K (2010) Impaired microvascular perfusion in sepsis requires activated coagulation and P-selectin-mediated platelet adhesion in capillaries. Intensive Care Med 36:1928–1934PubMedCrossRefGoogle Scholar
  72. Seno T, Inoue N, Matsui K, Ejiri J, Hirata KI, Kawashima S, Yokoyama M (2004) Functional expression of sodium-dependent vitamin C transporter 2 in human endothelial cells. J Vasc Res 41:345–351PubMedCrossRefGoogle Scholar
  73. Sharma P, Raghavan SA, Saini R, Dikshit M (2004) Ascorbate-mediated enhancement of reactive oxygen species generation from polymorphonuclear leukocytes: modulatory effect of nitric oxide. J Leukoc Biol 75:1070–1078PubMedCrossRefGoogle Scholar
  74. Sharshar T, Hopkinson NS, Orlikowski D, Annane D (2005) Science review: the brain in sepsis – culprit and victim. Crit Care 9:37–44PubMedCrossRefGoogle Scholar
  75. Shen KP, Lo YC, Yang RC, Liu HW, Chen IJ, Wu BN (2005) Antioxidant eugenosedin-A protects against lipopolysaccharide-induced hypotension, hyperglycaemia and cytokine immunoreactivity in rats and mice. J Pharm Pharmacol 57:117–125PubMedCrossRefGoogle Scholar
  76. Singer G, Urakami H, Specian RD, Stokes KY, Granger DN (2006) Platelet recruitment in the murine hepatic microvasculature during experimental sepsis: role of neutrophils. Microcirculation 13:89–97PubMedCrossRefGoogle Scholar
  77. Smith AR, Visioli F, Hagen TM (2002) Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid. FASEB J 16:1102–4110PubMedGoogle Scholar
  78. Spolarics Z, Stein DS, Garcia ZC (1996) Endotoxin stimulates hydrogen peroxide detoxifying activity in rat hepatic endothelial cells. Hepatology 24:691–696PubMedCrossRefGoogle Scholar
  79. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396PubMedCrossRefGoogle Scholar
  80. Steffel J, Luscher TF, Tanner FC (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113:722–731PubMedCrossRefGoogle Scholar
  81. Stoclet JC, Martinez MC, Ohlmann P, Chasserot S, Schott C, Kleschyov AL, Schneider F, Andriantsitohaina R (1999) Induction of nitric oxide synthase and dual effects of nitric oxide and cyclooxygenase products in regulation of arterial contraction in human septic shock. Circulation 100:107–112PubMedGoogle Scholar
  82. Sundrani R, Easington CR, Mattoo A, Parrillo JE, Hollenberg SM (2000) Nitric oxide synthase inhibition increases venular leukocyte rolling and adhesion in septic rats. Crit Care Med 28:2898–2903PubMedCrossRefGoogle Scholar
  83. Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S (2000) Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg 135:326–331PubMedCrossRefGoogle Scholar
  84. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27:1231–1234PubMedCrossRefGoogle Scholar
  85. Tousoulis D, Xenakis C, Tentolouris C, Davies G, Antoniades C, Crake T, Stefanadis C (2005) Effects of vitamin C on intracoronary L-arginine dependent coronary vasodilatation in patients with stable angina. Heart 91:1319–1323PubMedCrossRefGoogle Scholar
  86. Tyml K, Li F, Wilson JX (2005) Delayed ascorbate bolus protects against maldistribution of microvascular blood flow in a rat model of sepsis. Crit Care Med 33:1823–1828PubMedCrossRefGoogle Scholar
  87. Vissers MCM, Gunningham SP, Morrison MJ, Dachs GU, Currie MJ (2007) Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellular ascorbate. Free Radic Biol Med, doi: 10.1016/j.freeradbiomed.2006.11.023Google Scholar
  88. Wang W, Mitra A, Poole B, Falk S, Lucia MS, Tayal S, Schrier R (2004) Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 287:F1044–F1048PubMedCrossRefGoogle Scholar
  89. Wenger RH (2002) Cellular adaptation to hypoxia: O2 sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2 regulated gene expression. FASEB J 16:1151–1162PubMedCrossRefGoogle Scholar
  90. Wilson JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25:105–125PubMedCrossRefGoogle Scholar
  91. Wilson JX, Dragan M (2005) Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Free Radic Biol Med 39:990–998PubMedCrossRefGoogle Scholar
  92. Wilson JX, Gelb AW (2002) Free radicals, antioxidants, and neurologic injury: Possible relationship to cerebral protection by anesthetics. J Neurosurg Anesthesiol 14:66–79PubMedCrossRefGoogle Scholar
  93. Wilson JX, Young GB (2003) Progress in clinical neurosciences: Sepsis-associated encephalopathy: Evolving concepts. Can J Neurol Sci 30:98–105PubMedGoogle Scholar
  94. Wilson JX, Dixon SJ, Yu J, Nees S, Tyml K (1996) Ascorbate uptake by microvascular endothelial cells of rat skeletal muscle. Microcirculation 3:211–221PubMedCrossRefGoogle Scholar
  95. Wu F, Cepinskas G, Wilson JX, Tyml K (2001) Nitric oxide attenuates but superoxide enhances iNOS expression in endotoxin- and IFNgamma-stimulated skeletal muscle endothelial cells. Microcirculation 8:415–425PubMedGoogle Scholar
  96. Wu F, Tyml K, Wilson JX (2002) Ascorbate inhibits iNOS expression in endotoxin- and IFN gamma-stimulated rat skeletal muscle endothelial cells. FEBS Lett 520:122–126PubMedCrossRefGoogle Scholar
  97. Wu F, Wilson JX, Tyml K (2003) Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol 285:R50–R56PubMedGoogle Scholar
  98. Wu F, Wilson JX, Tyml K (2004) Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med 37:1282–1289PubMedCrossRefGoogle Scholar
  99. Wu F, Tyml K, Wilson JX (2005) Ascorbate inhibits iNOS induction in microvascular endothelial cells through inhibiting NADPH oxidase activity. FASEB J 19:A507Google Scholar
  100. Wu F, Schuster DP, Tyml K, Wilson JX (2007) Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med 42:124–131PubMedCrossRefGoogle Scholar
  101. Yu HP, Lui PW, Hwang TL, Yen CH, Lau YT (2006) Propofol improves endothelial dysfunction and attenuates vascular superoxide production in septic rats. Crit Care Med 34:453–460PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Exercise and Nutrition SciencesUniversity at BuffaloBuffaloUSA

Personalised recommendations