Interplay between Metal Ions and Nucleic Acids pp 249-268

Part of the Metal Ions in Life Sciences book series (MILS, volume 10)

Enantioselective Catalysis at the DNA Scaffold

Chapter

Abstract

The unique chiral structure and the highly specific Watson-Crick base-pairing interactions that characterize natural double-stranded DNA, make this natural biopolymer an attractive ligand for asymmetric catalytic processes. In this chapter the applications of DNA as scaffold and chiral ligand in enantioselective transition metal catalysis are presented. An overview of the state of the art for the different approaches to metal-DNA based catalysts is given, followed by an overview of the mechanistic studies that have been performed to date.

Keywords

asymmetric catalysis chirality DNA DNA-based catalysis reactions in water 

References

  1. 1.
    J. D. Watson, F. H. Crick, Nature 1953, 171, 737−738.PubMedGoogle Scholar
  2. 2.
    N. C. Seeman, Angew. Chem. Int. Ed. 1998, 37, 3220−3238.CrossRefGoogle Scholar
  3. 3.
    P. W. K. Rothemund, Nature 2006, 440, 297−302.CrossRefPubMedGoogle Scholar
  4. 4.
    J. J. Storhoff, C. A. Mirkin, Chem. Rev., 1999, 99, 1849–1862.CrossRefPubMedGoogle Scholar
  5. 5.
    X. Li, D. R. Liu, Angew. Chem. Int. Ed. 2004, 43, 4848–4870.CrossRefGoogle Scholar
  6. 6.
    S. K. Silverman, Angew. Chem. Int. Ed. 2010, 49, 7180−7201.CrossRefGoogle Scholar
  7. 7.
    A. J. Boersma, R. P. Megens, B. L. Feringa, G. Roelfes, Chem. Soc. Rev. 2010, 39, 2083–2092.CrossRefPubMedGoogle Scholar
  8. 8.
    Organic Reactions in Water: Principles, Strategies and Applications, Ed U. M. Lindström, 1st ed., Wiley-Blackwell, Oxford, 2007, pp. 1−424.Google Scholar
  9. 9.
    U. M. Lindström, Chem. Rev. 2002, 102, 2751−2772.CrossRefPubMedGoogle Scholar
  10. 10.
    J. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948−1958.Google Scholar
  11. 11.
    E. W. Dijk, B. L. Feringa, G. Roelfes, in Topics in Organometallic Chemistry, Vol. 25, Ed. T. R. Ward, Springer, Berlin, 2009, pp. 1−24.Google Scholar
  12. 12.
    G. Roelfes, B. L. Feringa, Angew. Chem. Int. Ed. 2005, 44, 3230–3232.CrossRefGoogle Scholar
  13. 13.
    D. C. Rideout, R. Breslow, J. Am. Chem. Soc. 1980, 102, 7816–7817.CrossRefGoogle Scholar
  14. 14.
    S. Otto, J. B. F. N. Engberts, J. Am. Chem. Soc. 1999, 121, 6798–6806.CrossRefGoogle Scholar
  15. 15.
    S. Kobayashi and K. Manabe, Acc. Chem. Res. 2002, 35, 209–217.CrossRefPubMedGoogle Scholar
  16. 16.
    S. Otto, G. Boccaletti, and J. B. F. N. Engberts, J. Am. Chem. Soc. 1998, 120, 4238–4239.CrossRefGoogle Scholar
  17. 17.
    M. Pitié, G. Pratviel, Chem. Rev. 2010, 110, 1018–1059.CrossRefPubMedGoogle Scholar
  18. 18.
    A. C. Braisted, P. G. Schultz, J. Am. Chem. Soc. 1990, 112, 7430–7431.CrossRefGoogle Scholar
  19. 19.
    D. Hilvert, K. W. Hill, K. D. Nared, M. T. M. Auditor, J. Am. Chem. Soc. 1989, 111, 9261−9262.CrossRefGoogle Scholar
  20. 20.
    M. Helm, M. Petermeier, B. X. Ge, R. Fiammengo, A. Jäschke, J. Am. Chem. Soc. 2005, 127, 10492−10493.CrossRefPubMedGoogle Scholar
  21. 21.
    K. Ishihara, M. Fushimi, Org. Lett. 2006, 8, 1921−1924.CrossRefPubMedGoogle Scholar
  22. 22.
    G. Roelfes, A. J. Boersma, B. L. Feringa, Chem. Commun. 2006, 635–637.Google Scholar
  23. 23.
    A. J. Boersma, B. L. Feringa, G. Roelfes, Org. Lett. 2007, 9, 3647–3650.CrossRefPubMedGoogle Scholar
  24. 24.
    D. A. Evans, K. R. Fandrick, H. J. Song, J. Am. Chem. Soc. 2005, 127, 8942–8943.CrossRefPubMedGoogle Scholar
  25. 25.
    M. C. Myers, A. R. Bharadwaj, B. C. Milgram, K. A. Scheidt, J. Am. Chem. Soc. 2005, 127, 14675–14680.CrossRefPubMedGoogle Scholar
  26. 26.
    D. A. Evans, K. R. Fandrick, Org. Lett. 2006, 8, 2249–2252.CrossRefPubMedGoogle Scholar
  27. 27.
    D. A. Evans, H. J. Song, K. R. Fandrick, Org. Lett. 2006, 8, 3351–3354.CrossRefPubMedGoogle Scholar
  28. 28.
    D. A. Evans, K. R. Fandrick, H.–J. Song, K. A. Scheidt, R. Xu, J. Am. Chem. Soc. 2007, 129, 10029–10041.CrossRefPubMedGoogle Scholar
  29. 29.
    U. Jakobsen, K. Rohr, S. Vogel, Nucleosides, Nucleotides, and Nucleic Acids 2007, 26, 1419–1422.CrossRefPubMedGoogle Scholar
  30. 30.
    N. Sancho Oltra, G. Roelfes, Chem. Commun. 2008, 6039–6041.Google Scholar
  31. 31.
    D. Coquière, B. L. Feringa, G. Roelfes, Angew. Chem. Int. Ed. 2007, 46, 9308–9311.CrossRefGoogle Scholar
  32. 32.
    R. P. Megens, G. Roelfes, Org. Biomol. Chem. 2010, 8, 1387−1393.CrossRefPubMedGoogle Scholar
  33. 33.
    A. J. Boersma, B. L. Feringa, G. Roelfes, Angew. Chem. Int. Ed. 2009, 48, 3346–3348.CrossRefGoogle Scholar
  34. 34.
    N. Shibata, H. Yasui, S. Nakamura, T. Toru, Synlett 2007, 1153−1157.Google Scholar
  35. 35.
    E. W. Dijk, B. L. Feringa, G. Roelfes, Tetrahedron: Asymmetry 2008, 19, 2374−2377.CrossRefGoogle Scholar
  36. 36.
    A. J. Boersma, D. Coquière, D. Geerdink, F. Rosati, B. L. Feringa, G. Roelfes, Nature Chem. 2010, 2, 991−995.CrossRefGoogle Scholar
  37. 37.
    L. Ropartz, N. J. Meeuwenoord, G. A. van der Marel, P. W. N. M. van Leeuwen, A. M. Z. Slawin, P. C. J. Kamer, Chem. Commun. 2007, 1556−1558.Google Scholar
  38. 38.
    M. Caprioara, R. Fiammengo, M. Engeser, A. Jäschke, Chem.–Eur. J. 2007, 13, 2089−2095.Google Scholar
  39. 39.
    M. Nuzzolo, A. Grabulosa, A. M. Z. Slawin, N. J. Meeuwenoord, G. A. van der Marel, P. C. J. Kämer, Eur. J. Org. Chem. 2010, 3229−3236.Google Scholar
  40. 40.
    P. Fournier, R. Fiammengo, A. Jäschke, Angew. Chem. Int. Ed. 2009, 48, 4426−4429.CrossRefGoogle Scholar
  41. 41.
    F. Rosati, A. J. Boersma, J. E. Klijn, A. Meetsma, B. L. Feringa, G. Roelfes, Chem.–Eur. J. 2009, 15, 9596−9605.CrossRefPubMedGoogle Scholar
  42. 42.
    S. Otto, F. Bertoncin, J. B. F. N. Engberts, J. Am. Chem. Soc. 1996, 118, 7702−7707.CrossRefGoogle Scholar
  43. 43.
    A. J. Boersma, J. E. Klijn, B. L. Feringa, G. Roelfes, J. Am. Chem. Soc. 2008, 130, 11783−11790.CrossRefPubMedGoogle Scholar
  44. 44.
    S. Roe, D. J. Ritson, T. Garner, M. Searle, J. E. Moses, Chem. Commun. 2010, 46, 4309−4311.CrossRefGoogle Scholar
  45. 45.
    H. M. Berman, B. Schneider, in Oxford Handbook of Nucleic Acid Structure, Ed S. Neidle, Oxford University Press, Oxford, 1999, p. 295.Google Scholar
  46. 46.
    F. Rosati, G. Roelfes, ChemCatChem 2010, 2, 916−927.CrossRefGoogle Scholar
  47. 47.
    C. M. Thomas, T. R. Ward, Chem. Soc. Rev. 2005, 34, 337−346.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations