Interplay between Metal Ions and Nucleic Acids pp 201-216

Part of the Metal Ions in Life Sciences book series (MILS, volume 10)

Oxidative DNA Damage Mediated by Transition Metal Ions and Their Complexes

Chapter

Abstract

DNA damage by redox-active metal complexes depends on the interaction of the metal complex with DNA together with the mechanism of oxygen activation. Weak interaction, tight binding, and direct involvement of DNA in the coordination sphere of the metal are described. Metal complexes acting through the production of diffusing radicals and metal complexes oxidizing DNA by metal-centered active species are compared. Metal complexes able to form high-valent metal-oxo species in close contact with DNA and perform DNA oxidation in a way reminiscent of enzymatic chemistry are the most elegant systems.

Keywords

DNA-metal interaction hydroxyl radical iron bleomycin manganese porphyrin nickel complexes platinum complexes 

References

  1. 1.
    J. T. Groves, J. Inorg. Biochem. 2006, 100, 434–447.CrossRefPubMedGoogle Scholar
  2. 2.
    L. Que, Jr., Acc. Chem. Res. 2007, 40, 493–500.CrossRefPubMedGoogle Scholar
  3. 3.
    L. Que, Jr., W. B. Tolman, Nature 2008, 455, 333–340.CrossRefPubMedGoogle Scholar
  4. 4.
    M. Pitié, G. Pratviel, Chem. Rev. 2010, 110, 1018–1059.CrossRefPubMedGoogle Scholar
  5. 5.
    A. Gunay, K. H. Theopold, Chem. Rev. 2010, 110, 1060–1081.CrossRefPubMedGoogle Scholar
  6. 6.
    B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004,104, 3947–3980.CrossRefPubMedGoogle Scholar
  7. 7.
    S. Shaik, H. Hirao, D. Kumar, Acc. Chem. Res. 2007, 40, 532–542.CrossRefPubMedGoogle Scholar
  8. 8.
    T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329–2363.CrossRefPubMedGoogle Scholar
  9. 9.
    S. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, Chem. Rev. 2005, 105, 2175–2226.CrossRefPubMedGoogle Scholar
  10. 10.
    M. M. Abu-Omar, A. Loaiza, N. Hontzeas, Chem. Rev. 2005, 105, 2227–2252.CrossRefPubMedGoogle Scholar
  11. 11.
    E. I. Solomon, P. Chen, M. Metz, S. K. Lee, A. E. Palmer, Angew. Chem. Int. Ed. 2001, 40, 4570–4590.CrossRefGoogle Scholar
  12. 12.
    R. A. Himes, K. D. Karlin, Curr. Opin. Chem. Biol. 2009, 13, 119–131.CrossRefPubMedGoogle Scholar
  13. 13.
    S. Steenken, S. V. Jovanovic, J. Am. Chem. Soc. 1997, 119, 617–618.CrossRefGoogle Scholar
  14. 14.
    C. von Sonntag, Free-Radical-Induced DNA Damage and Its Repair, A Chemical Perspective, Springer-Verlag, Berlin, Heidelberg, New York, 2006.Google Scholar
  15. 15.
    J. R. Wagner, J. Cadet, Acc. Chem. Res. 2010, 43, 564–571.CrossRefPubMedGoogle Scholar
  16. 16.
    J. Cadet, T. Douki, J. L. Ravanat, Free Radical Biol. Med. 2010, 49, 9–21.CrossRefGoogle Scholar
  17. 17.
    C. J. Burrows, J. G. Muller, Chem. Rev. 1998, 98, 1109–1152.CrossRefPubMedGoogle Scholar
  18. 18.
    W. K. Pogozelski, T. D. Tullius, Chem. Rev. 1998, 98, 1089–1108.CrossRefPubMedGoogle Scholar
  19. 19.
    T. D. Tullius, J. A. Greenbaum, Curr. Opin. Chem. Biol. 2005, 9, 127–134.CrossRefPubMedGoogle Scholar
  20. 20.
    S. S. Jain, T. D. Tullius, Nat. Protoc. 2008, 3,1092–1100.CrossRefPubMedGoogle Scholar
  21. 21.
    P. B. Dervan, Science 1986, 232, 464–471.CrossRefPubMedGoogle Scholar
  22. 22.
    D. P. Mack, B. L. Iverson, P. B. Dervan, J. Am. Chem. Soc. 1988, 110, 7572–7574.CrossRefGoogle Scholar
  23. 23.
    R. Baliga, J. W. Singleton, P. B. Dervan, Proc. Natl. Acad. Sci. USA 1995, 92, 10393–10397.CrossRefPubMedGoogle Scholar
  24. 24.
    J. C. Genereux, J. K. Barton, Chem. Rev. 2010, 110, 1642–1662.CrossRefPubMedGoogle Scholar
  25. 25.
    G. Pratviel, B. Meunier, Chem. Eur. J. 2006, 12, 6018–6030.CrossRefPubMedGoogle Scholar
  26. 26.
    C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, Science 1993, 262, 1025–1029.CrossRefPubMedGoogle Scholar
  27. 27.
    D. B. Hall, R. E. Holmlin, J. K. Barton, Nature 1996, 382, 731–735.CrossRefPubMedGoogle Scholar
  28. 28.
    C. Vialas, G. Pratviel, C. Claparols, B. Meunier, J. Am. Chem. Soc. 1998, 120, 11548–11553.CrossRefGoogle Scholar
  29. 29.
    M. Pitié, C. Boldron, G. Pratviel, Adv. Inorg. Chem. 2006, 58, 77–130.CrossRefGoogle Scholar
  30. 30.
    B. Mestre, A. Jakobs, G. Pratviel, B. Meunier, Biochemistry 1996, 35, 9140–9149.CrossRefPubMedGoogle Scholar
  31. 31.
    R. E. Kilkuskie, H. Suguna, B. Yellin, N. Murugesan, S.M. Hecht, J. Am. Chem. Soc. 1985, 107, 260–261.CrossRefGoogle Scholar
  32. 32.
    J. Bernadou, G. Pratviel, F. Bennis, M. Girardet, B. Meunier, Biochemistry 1989, 28, 7268–7275.CrossRefPubMedGoogle Scholar
  33. 33.
    D. H. Petering, Q. Mao, W. Li, E. DeRose, W. E. Antholine, Met. Ions Biol. Syst. 1996, 33, 619–648.PubMedGoogle Scholar
  34. 34.
    R. M. Burger, Chem. Rev. 1998, 98, 1153–1170.CrossRefPubMedGoogle Scholar
  35. 35.
    C. A. Claussen, E. C. Long, Chem. Rev. 1999, 99, 2797–2816.CrossRefPubMedGoogle Scholar
  36. 36.
    J. Chen, J. Stubbe, Curr. Opin. Chem. Biol. 2004, 8, 175–181.CrossRefPubMedGoogle Scholar
  37. 37.
    S. T. Hoehn, H. D. Junker, R. C. Bunt, C. J. Turner, J. Stubbe, Biochemistry 2001, 40, 5894–5905.CrossRefPubMedGoogle Scholar
  38. 38.
    C. Zhao, C. Xia, Q. Mao, H. Forsterling, E. DeRose, W.E. Antholine, W.K. Subczynski, D. H. Petering, J. Inorg. Biochem. 2002, 91, 259–268.CrossRefGoogle Scholar
  39. 39.
    K. D. Goodwin, M. A. Lewis, E. C. Long, M. M. Georgiadis, Proc. Natl. Acad. Sci. USA 2008, 105, 5052–5056.CrossRefPubMedGoogle Scholar
  40. 40.
    J. Chen, J. Stubbe, Nat. Rev. Cancer 2005, 5, 102–112.CrossRefPubMedGoogle Scholar
  41. 41.
    A. T. Abraham, X. Zhou, S.M. Hecht, J. Am. Chem. Soc. 2001, 123, 5167–5175.CrossRefPubMedGoogle Scholar
  42. 42.
    J. Chen, M. K. Ghorai, G. Kenney, J. Stubbe, Nucleic Acids Res. 2008, 36, 3781–3790.CrossRefPubMedGoogle Scholar
  43. 43.
    J. T. Groves, J. B. Lee, S. S. Marla, J. Am. Chem. Soc. 1997, 119, 6269–6273.CrossRefGoogle Scholar
  44. 44.
    P. Arnaud, K. Zakrzewska, B. Meunier, J. Comput. Chem. 2003, 24, 797–805.CrossRefPubMedGoogle Scholar
  45. 45.
    M. Pitié, J. Bernadou, B. Meunier, J. Am. Chem. Soc. 1995, 117, 2935–2336.CrossRefGoogle Scholar
  46. 46.
    G. Pratviel, M. Pitié, J. Bernadou, B. Meunier, Angew. Chem. Int. Ed. 1991, 30, 702–704.CrossRefGoogle Scholar
  47. 47.
    C. Vialas, G. Pratviel, B. Meunier, Biochemistry 2000, 39, 9514–9522.CrossRefPubMedGoogle Scholar
  48. 48.
    X. Chen, S. E. Rokita, C. J. Burrows, J. Am. Chem. Soc. 1991, 113, 5884–5886.CrossRefGoogle Scholar
  49. 49.
    J. G. Muller, X. Chen, A. C. Dadiz, S. E. Rokita, C. J. Burrows, J. Am. Chem. Soc. 1992, 114, 6407–6411.CrossRefGoogle Scholar
  50. 50.
    J. G. Muller, X. Chen, A. C. Dadiz, S. E. Rokita, C. J. Burrows, Pure Appl. Chem. 1993, 65, 545–550.CrossRefGoogle Scholar
  51. 51.
    C. J. Burrows, S. E. Rokita, Acc. Chem. Res. 1994, 27, 295–301.CrossRefGoogle Scholar
  52. 52.
    H.-C. Shih, N. Tang, C. J. Burrows, S. E. Rokita, J. Am. Chem. Soc. 1998, 120, 3284–3288.CrossRefGoogle Scholar
  53. 53.
    H.-C. Shih, H. Kassahun, C. J. Burrows, S. E. Rokita, Biochemistry 1999, 38, 15034–15042.CrossRefPubMedGoogle Scholar
  54. 54.
    P. Ghude, M. A. Schallenberger, A. M. Fleming, J. G. Muller, C. J. Burrows, Inorg. Chim. Acta 2011, doi:10.1016/j.ica.2010.12.063.Google Scholar
  55. 55.
    W. Ye, R. Sangaiah, D. E. Degen, A. Gold, K. Jayaraj, K. M. Koshlap, G. Boysen, J. Williams, K. B. Tomer, L. M. Ball, Chem. Res. Toxicol. 2006,19, 506–510.CrossRefPubMedGoogle Scholar
  56. 56.
    W. Ye, R. Sangaiah, D. E. Degen, A. Gold, K. Jayaraj, K. M. Koshlap, G. Boysen, J. Williams, K. B. Tomer, V. Mocanu, N. Dicheva, C. E. Parker, R. M. Schaaper, L. M. Ball, J. Am. Chem. Soc. 2009, 131, 6114–6123.CrossRefPubMedGoogle Scholar
  57. 57.
    L. Li, K. D. Karlin, S. E. Rokita, J. Am. Chem. Soc. 2005, 127, 520–521.CrossRefPubMedGoogle Scholar
  58. 58.
    S. Choi, R. B. Cooley, A. S. Hakemian, Y. C. Larrabee, R. C. Bunt, S. D. Maupas, J. G. Muller, C. J. Burrows, J. Am. Chem. Soc. 2004, 126, 591–598.CrossRefPubMedGoogle Scholar
  59. 59.
    S. Choi, R. B. Cooley, A. Voutchkova, C. H. Leung, L. Vastag, D. E. Knowles, J. Am. Chem. Soc. 2005, 127, 1773–1781.CrossRefPubMedGoogle Scholar
  60. 60.
    S. Choi, L. Vastag, C. H. Leung, A. M. Beard, D. E. Knowles, J. A. Larrabee, Inorg. Chem. 2006, 45, 10108–10114.CrossRefPubMedGoogle Scholar
  61. 61.
    S. Choi, L. Vastag, Y. C. Larrabee, M. L. Personick, K. B. Schaberg, B. J. Fowler, R. K. Sandwick, G. Rawji, Inorg. Chem. 2008, 47, 1352–1360.CrossRefPubMedGoogle Scholar
  62. 62.
    R. M. Roat, M. J. Jerardi, C. B. Kopay, V. Heath, J. A. Clark, J. A. DeMars, J. M. Weaver, E. Bezemer, J. Reedijk, J. Chem. Soc., Dalton Trans. 1997, 3115–3621.Google Scholar
  63. 63.
    Note added in proof: Coordination of copper at the N7 of guanine was also proposed to be at the origin of guanine oxidation, see A. M. Fleming, J. G. Muller, I. Ji, C. J. Burrows. Org. Biomol. Chem. 2011, 9, 3338–3348.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Laboratoire de Chimie de CoordinationCNRSToulouse-Cedex 04France

Personalised recommendations