Spectroscopic Investigations of Lanthanide Ion Binding to Nucleic Acids

Chapter
Part of the Metal Ions in Life Sciences book series (MILS, volume 10)

Abstract

Luminescent lanthanide (Ln(III)) ions are valuable spectroscopic probes for metal ion binding sites in nucleic acids. In this chapter, we briefly review Ln(III) luminescence and the information available from these experiments. An emphasis is placed on direct excitation Eu(III) spectroscopy as a tool. Eu(III) excitation spectroscopy is used to show that solutions containing micromolar Eu(III), 100 mM NaCl, and 20 mM MES buffer contain predominantly a mononuclear Eu(III) aqua complex and an Eu(III) hydroxide complexes. The binding of these species to various RNA and DNA sequences are monitored by using Eu(III) excitation spectroscopy. Eu(III) luminescence lifetime data shows that the Eu(III) ion typically loses 1–3 water molecules to form innersphere complexes with RNA and DNA that contain tandem base pair mismatches or hairpin loops. In addition, early studies that used nucleobase-sensitized Eu(III) or Tb(III) luminescence within transfer RNA or in the hammerhead ribozyme are presented. Luminescence resonance energy transfer studies are shown to be useful for determining distances between bound Ln(III) ion and organic fluorophores or between two different Ln(III) ions. To supplement luminescence data, the binding sites of paramagnetic Ln(III) ions are determined by monitoring the chemical shifts of nucleotide protons. Binding sites are identified by following the protons that are influenced by the Ln(III) pseudo-contact shift.

Keywords

DNAzyme europium fl uorescence resonance energy transfer lanthanide ion aqueous complexes lanthanide ion complexes lanthanide ion coordination chemistry lanthanide ion dimerization lanthanide ion hydrolysis laser induced luminescence luminescence lifetimes lanthanide luminescence lanthanide ion macrocyclic complexes lanthanide ion solution chemistry nucleic acid materials nucleic acid structure pseudo-contact shift ribozyme RNA NMR structure 

Notes

Acknowledgment

We acknowledge Dr. Ryan Matthews of the University at Buffalo and Dr. Matthew Fountain of the State University of New York, College at Fredonia, for contributing to this manuscript. We gratefully acknowledge the National Science Foundation (CHE0911375) for support of this work and for a major instrumentation award (CHE-0321058) to build the MOPO laser system.

References

  1. 1.
    W. D. J. Horrocks, Jr., D. R. Sudnick, Acc. Chem. Res. 1981, 14, 384–392.CrossRefGoogle Scholar
  2. 2.
    W. D. Horrocks, Jr., Adv. Inorg. Biochem. 1982, 4, 201–261.Google Scholar
  3. 3.
    J.-C. G. Bünzli, Acc. Chem. Res. 2006, 39, 53–61.CrossRefPubMedGoogle Scholar
  4. 4.
    S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189–227.CrossRefPubMedGoogle Scholar
  5. 5.
    G. R. Choppin, D. R. Peterman, Coord. Chem. Rev. 1998, 174, 283–299.CrossRefGoogle Scholar
  6. 6.
    W. D. Horrocks, Jr., W. E. Collier, J. Am. Chem. Soc. 1981, 103, 2856–2862.CrossRefGoogle Scholar
  7. 7.
    W. D. Horrocks, Jr., M.-J. Rhee, A. P. Snyder, D. R. Sudnick, J. Am. Chem. Soc. 1980, 102, 3650–3652.CrossRefGoogle Scholar
  8. 8.
    E. G. Moore, A. P. S. Samuel, K. N. Raymond, Acc. Chem. Res. 2009, 42, 542–552.CrossRefPubMedGoogle Scholar
  9. 9.
    C. P. Montgomery, B. S. Murray, E. J. New, R. Pal, D. Parker, Acc. Chem. Res. 2009, 42, 925–937.CrossRefPubMedGoogle Scholar
  10. 10.
    V. S. Sastri, J.-C. G. Bünzli, R. Rao, G. V. S. Rayudu, J. R. Perumareddi, Modern Aspects of Rare Earths and Their Complexes, 1st edn., Elsevier B. V., Amsterdam, The Netherlands, 2003.Google Scholar
  11. 11.
    W. D. Horrocks, Jr., J. Am. Chem. Soc. 1977, 99, 2378.CrossRefPubMedGoogle Scholar
  12. 12.
    C. M. Andolina, W. G. Holthoff, P. M. Page, R. A. Mathews, J. R. Morrow, F. V. Bright, Appl. Spectroscopy 2009, 63, 483–493.CrossRefGoogle Scholar
  13. 13.
    A. P. S. Samuel, J. Xu, K. N. Raymond, Inorg. Chem. 2009, 48, 687–698.CrossRefPubMedGoogle Scholar
  14. 14.
    J.-C. G. Bünzli, A.-S. Chauvin, C. D. B. Vandevyver, S. Bo, S. Comby, Ann. New York Acad. Sci. 2008, 1130, 97–105.CrossRefGoogle Scholar
  15. 15.
    P. L. Fu, C. Turro, J. Am. Chem. Soc. 1999, 121, 1–7.CrossRefGoogle Scholar
  16. 16.
    D. P. Ringer, S. Burchett, D. E. Kizer, Biochemistry 1978, 17, 4818–4825.CrossRefPubMedGoogle Scholar
  17. 17.
    M. D. Topal, J.R. Fresco, Biochem. 1980, 19, 5531–5537.CrossRefGoogle Scholar
  18. 18.
    D. E. Draper, RNA 2004, 10, 335–343.CrossRefPubMedGoogle Scholar
  19. 19.
    D. E. Draper, D. Grilley, A. M. Soto, Ann. Rev. Biophys. Biomol. Struct. 2005, 34, 221–243.CrossRefGoogle Scholar
  20. 20.
    V. K. Mirsa, D. E. Draper, Proc. Nat. Acad. Sci. USA 2001, 98, 12456–12461.CrossRefGoogle Scholar
  21. 21.
    S. A. Pabit, X. Qiu, J. S. Lamb, L. Li, S. P. Meisburger, L. Pollack, Nucl. Acid. Res. 2009, 37, 3887–3896.CrossRefGoogle Scholar
  22. 22.
    E. Ennifar, P. Walter, P. Dumas, Nucl. Acid. Res. 2003, 31, 2671–2682.CrossRefGoogle Scholar
  23. 23.
    E. Freisinger, R. K. O. Sigel, Coord. Chem. Rev. 2007, 251 1834–1851.CrossRefGoogle Scholar
  24. 24.
    R. K. O. Sigel, S. Gallo, Chimia 2010, 64, 126–131.CrossRefPubMedGoogle Scholar
  25. 25.
    R. K. O. Sigel, H. Sigel, Acc. Chem. Res. 2010, 43, 974–984.CrossRefPubMedGoogle Scholar
  26. 26.
    A. S. Petrov, J. C. Bowman, S. C. Harvey, L. D. Williams, RNA 2011, 17, 291–297.CrossRefPubMedGoogle Scholar
  27. 27.
    D. J. Klein, P. B. Moore, T. A. Steitz, RNA 2006, 10, 1366–1379.CrossRefGoogle Scholar
  28. 28.
    B. Gong, Y. Chen, E. L. Christian, J.-H. Chen, E. Chase, D. M. Chadalavada, R. Yajima, B. L. Golden, P. C. Bevilacqua, P. R. Carey, J. Am. Chem. Soc. 2008, 130, 9670–9672.CrossRefPubMedGoogle Scholar
  29. 29.
    E. L. Christian, V. E. Anderson, P. R. Carey, M. E. Harris, Biochemistry 2010, 49, 2869–2879.CrossRefPubMedGoogle Scholar
  30. 30.
    V. J. DeRose, in Nucleic Acid-Metal Ion Interactions, Ed N. V. Hud, RSC Publishing, Cambridge, 2009, pp 154–179.Google Scholar
  31. 31.
    S. R. Morrissey, T. E. Horton, V. J. DeRose, J. Am. Chem. Soc. 2000, 122, 3473–3481.CrossRefGoogle Scholar
  32. 32.
    S. R. Morrissey, T. E. Horton, C. V. Grant, C. G. Hoogstraten, R. D. Britt, V. J. DeRose, J. Am. Chem. Soc. 1999, 121, 9215–9218.CrossRefGoogle Scholar
  33. 33.
    S. E. Butcher, F. H.-T. Allain, J. Feigon, Biochemistry 2000, 39, 2174–2182.CrossRefPubMedGoogle Scholar
  34. 34.
    N. V. Hud, J. Feigon, Biochemistry 2002, 41, 9900–9910.CrossRefPubMedGoogle Scholar
  35. 35.
    Z. Gdaniec, H. Sierzputowska-Gracz, E. C. Theil, Biochemistry 1998, 37, 1505–1512.CrossRefPubMedGoogle Scholar
  36. 36.
    J. H. Davis, T. R. Foster, M. Tonelli, S. E. Butcher, RNA 2007, 13,76–86.CrossRefPubMedGoogle Scholar
  37. 37.
    S. Rüdisser, I. Tinoco, Jr., J. Molec. Biol. 2000, 295, 1211–1223.CrossRefPubMedGoogle Scholar
  38. 38.
    M. Maderia, T.E. Horton, V. J. DeRose, Biochemistry 2000, 39, 8193–8200.CrossRefPubMedGoogle Scholar
  39. 39.
    M. Maderia, L.M. Hunsicker, V. J. DeRose, Biochemistry 2000, 39, 12113–12120.CrossRefPubMedGoogle Scholar
  40. 40.
    Y. Tanaka, C. Kojima, E. H. Morita, Y. Kasai, K. Yamasaki, A. Ono, M. Kainosho, K. Taira, J. Am. Chem. Soc. 2002, 124, 4595–4601.CrossRefPubMedGoogle Scholar
  41. 41.
    Y. Tanaka, K. Taira, Recent Research Developments in Organic Chemistry 2005, 9, 93–118.Google Scholar
  42. 42.
    G. Wang, B. L. Gaffney, R. A. Jones, J. Am. Chem. Soc. 2004, 126, 8908–8909.CrossRefPubMedGoogle Scholar
  43. 43.
    J. Burgess, Ions in Solution: Basic Principles of Chemical Interactions, Horwood, West Sussex, 1999.Google Scholar
  44. 44.
    C. F. G. C. Geraldes, C. Luchinat, in The Lanthanides and Their Interrelations with Biosystems, Vol. 40 of Metal Ions in Biological Systems, Eds A. Sigel, H. Sigel, Dekker, NY, 2003, pp. 513–588.Google Scholar
  45. 45.
    G. Pintacuda, M. John, X.-C. Su, G. Otting, Acc. Chem. Res. 2007, 40, 206–212.CrossRefPubMedGoogle Scholar
  46. 46.
    G. Stein, E. Wurzberg, J. Chem. Phys. 1975, 62, 208–213.CrossRefGoogle Scholar
  47. 47.
    W. D. Horrocks, D. R. Sudnick, Science 1979, 206, 1194–1196.CrossRefPubMedGoogle Scholar
  48. 48.
    S. Amin, D. A. Voss, Jr; W. D. Horrocks, Jr., C. H. Lake, M. R. Churchill, J. R. Morrow, Inorg. Chem. 1995, 34, 3294–3300.CrossRefGoogle Scholar
  49. 49.
    S. T. Frey, C. A. Chang, J. F. Carvalho, A. Varadarajan, L. M. Schultze, K. L. Pounds, W. D. Horrocks, Inorg. Chem. 1994, 33, 2882–2889.CrossRefGoogle Scholar
  50. 50.
    D. M. Epstein, L. L. Chappell, H. Khalili, R. M. Supkowski, W. D. Horrocks, Jr., J. R. Morrow, Inorg. Chem. 2000, 39, 2130–2134.CrossRefPubMedGoogle Scholar
  51. 51.
    S. T. Frey, W. D. Horrocks, Jr., Inorg. Chim. Acta 1995, 229, 383–390.CrossRefGoogle Scholar
  52. 52.
    G. R. Choppin, Z. M. Wang, Inorg. Chem. 1997, 36, 249–252.CrossRefGoogle Scholar
  53. 53.
    Y. Haas, G. Stein, E. Wurzberg, J. Chem. Phys. 1974, 60, 258–265.CrossRefGoogle Scholar
  54. 54.
    R. Pal, D. Parker, Org. Biomol. Chem. 2008, 6,1020–1033.CrossRefPubMedGoogle Scholar
  55. 55.
    C. M. Andolina, R. A. Mathews, J. R. Morrow, Helv. Chim. Acta 2009, 92, 2330–2348.CrossRefGoogle Scholar
  56. 56.
    W. D. Horrocks, D. R. Sudnick, J. Am. Chem. Soc. 1979, 101, 334–340.CrossRefGoogle Scholar
  57. 57.
    A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, M. Woods, J. Chem. Soc., Perkin Trans. 2 1999, 493–504.Google Scholar
  58. 58.
    K. Nwe, J. P. Richard, J. R. Morrow, J. Chem. Soc., Dalton Trans. 2007, 5171–5178.Google Scholar
  59. 59.
    J. G. Reifernberger, P. R. Selvin, Rev. Fluorescence 2005, 2, 399–431.CrossRefGoogle Scholar
  60. 60.
    P. R. Selvin, J. E. Hearst, Proc. Nat. Acad. Sci. USA 1994, 91, 10024–10027.CrossRefPubMedGoogle Scholar
  61. 61.
    F. Yuan, N. L. Greenbaum, Spectrum 2007, 20, 14–17.Google Scholar
  62. 62.
    P. R. Selvin, Ann. Rev. Biophys. Biomolec. Struc. 2002, 31, 275–302.CrossRefGoogle Scholar
  63. 63.
    T. Förster, Ann. Phys. 1948, 2, 55.CrossRefGoogle Scholar
  64. 64.
    H. G. Brittain, Inorg. Chem. 1978, 18, 1740–1745.CrossRefGoogle Scholar
  65. 65.
    L. Spaulding, H. G. Brittain, Inorg. Chem. 1983, 22, 3486–3488.CrossRefGoogle Scholar
  66. 66.
    C. M. Andolina, J. R. Morrow, Eur. J. Inorg. Chem. 2011, 154–164.Google Scholar
  67. 67.
    M.-J. Rhee, D. R. Sudnick, V. K. Arkle, W. D. J. Horrocks, Jr., Biochemistry 1981, 20, 3328–3334.CrossRefPubMedGoogle Scholar
  68. 68.
    P. R. Selvin, IEEE Journal of Selected Topics in Quantum Electronics 1996, 2, 1077–1087.CrossRefGoogle Scholar
  69. 69.
    F. Yuan, N. L. Greenbaum, Methods 2010, 52, 173–179.CrossRefPubMedGoogle Scholar
  70. 70.
    C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations, 2nd edn., Robert E. Krieger Publishing Company, Inc., Malabar, Florida, 1976.Google Scholar
  71. 71.
    P. J. Breen, W. D. Horrocks, Jr., Inorg. Chem. 1983, 22, 536–540.CrossRefGoogle Scholar
  72. 72.
    K. Cernochova, J. N. Mathur, G. R. Choppin, Radiochim. Acta 2005, 93, 733–739.CrossRefGoogle Scholar
  73. 73.
    I. Billard, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 33, Eds K. A. Gscheidner, Jr., J.-C. G. Bünzli, V. K. Pecharsky, Elsevier, Amsterdam, The Netherlands, 2003, 465–514.Google Scholar
  74. 74.
    A. Nehlig, M. Elhabiri, I. Billard, A.-M. Albrecht-Gary, K. Lutzenkirchen, Radiochim. Acta 2003, 91, 37–43.CrossRefGoogle Scholar
  75. 75.
    C. H. Huang, J. Hammell, S. J. Ratnakar, A. D. Sherry, J. R. Morrow, Inorg. Chem. 2010, 49, 5963–5970.CrossRefPubMedGoogle Scholar
  76. 76.
    F. Kielar, C. P. Montgomery, E. J. New, D. Parker, R. A. Poole, S. L. Richardson, P. A. Stenson, Org. Biomol. Chem. 2007, 5, 2975–2982.CrossRefPubMedGoogle Scholar
  77. 77.
    I. Sanchez-Lombardo, C. M. Andolina, J. R. Morrow, A. K. Yatsimirsky, Dalton Trans. 2010, 39, 864–873.CrossRefPubMedGoogle Scholar
  78. 78.
    L. Spaulding, H. G. Brittain, Inorg. Chem. 1984, 23, 2165–2170.CrossRefGoogle Scholar
  79. 79.
    S. Amin, D.A. Voss, Jr., W. D. Horrocks., Jr., J. R. Morrow, Inorg. Chem. 1996, 35, 7466–7467.CrossRefGoogle Scholar
  80. 80.
    G. Hernandez, H. G. Brittain, M. F. Tweedle, R. G. Bryant, Inorg. Chem. 2010, 29, 864–873.Google Scholar
  81. 81.
    L. Jovine, S. Djordjevic, D. Rhodes, J. Molec. Biol. 2000, 301, 401–414.CrossRefPubMedGoogle Scholar
  82. 82.
    J. M. Wolfson, D. R. Kearns, Biochemistry 1975, 14, 1436–1444.CrossRefPubMedGoogle Scholar
  83. 83.
    E. H. Cornwall, Ph. D. Thesis, Pennsylvania State University, University Park, PA,1993.Google Scholar
  84. 84.
    N.L. Greenbaum, C. Mundoma, D. R. Peterman, Biochemistry 2001, 40, 1124–1134.CrossRefPubMedGoogle Scholar
  85. 85.
    J. Schnabl, R. K. O. Sigel, Curr. Opin. Chem. Biol. 2010, 14, 269–275.CrossRefPubMedGoogle Scholar
  86. 86.
    R. K. O. Sigel, A. M. Pyle, Chem. Rev. 2007, 107, 97–113.CrossRefPubMedGoogle Scholar
  87. 87.
    J. L. O’Rear, S. Wang, A. L. Feig, L. Beigelman, O. C. Uhlenbeck, D. Herschlag, RNA 2001, 7, 537–545.CrossRefPubMedGoogle Scholar
  88. 88.
    T. Humphry, S. Iyer, O. Iranzo, J. R. Morrow, J. P. Richard, P. Paneth, A. C. Hengge, J. Am. Chem. Soc. 2008, 130, 17858–17866.CrossRefPubMedGoogle Scholar
  89. 89.
    J. R. Morrow, Comments Inorg. Chem. 2008, 29, 169–188.CrossRefGoogle Scholar
  90. 90.
    A. L. Feig, M. Panek, W. D. Horrocks, Jr, O. C. Uhlenbeck, Chem. Biol. 1999, 6, 801–810.CrossRefPubMedGoogle Scholar
  91. 91.
    A. L. Feig, W. G. Scott, O. C. Uhlenbeck, Science 1998, 279, 81–84.CrossRefPubMedGoogle Scholar
  92. 92.
    F. Yuan, L. Griffin, L. Phelps, V. Buschmann, K. Weston, N. L. Greenbaum, Nucl. Acid. Res. 2007, 35, 2833–2845.CrossRefGoogle Scholar
  93. 93.
    K. Nwe, C. M. Andolina, J. R. Morrow, J. Am. Chem. Soc. 2008, 130, 14861–14871.CrossRefPubMedGoogle Scholar
  94. 94.
    H. A. Heus, A. Pardi, Science 1991, 253, 191–194.CrossRefPubMedGoogle Scholar
  95. 95.
    M. Costa, F. Michel, EMBO J 1995, 14, 1276–1285.PubMedGoogle Scholar
  96. 96.
    F. L. Murphy, T. R. Cech, J. Molec. Biol. 1994, 263, 49–63.CrossRefGoogle Scholar
  97. 97.
    M.-Y. Yang, J. R. Morrow, J. P. Richard, Bioorg. Chem. 2007, 35, 366–374.CrossRefPubMedGoogle Scholar
  98. 98.
    C. D. Downey, J. L. Fiore, C. D. Stoddard, J. H. Hodak, D. J. Nesbitt, A. Pardi, Biochemistry 2006, 45, 3664–3673.CrossRefPubMedGoogle Scholar
  99. 99.
    C. Mundoma, N. L. Greenbaum, J. Am. Chem. Soc. 2001, 124, 3525–3532.CrossRefGoogle Scholar
  100. 100.
    C. Mundoma, N. L. Greenbaum, Biopolymers 2003, 69, 100–109.CrossRefPubMedGoogle Scholar
  101. 101.
    R. A. Mathews, C. S. Rossiter, J. R. Morrow, J. P. Richard, Dalton Trans. 2007, 3804–3811.Google Scholar
  102. 102.
    J.-M. Escudier, C. Dupouy, M. A. Fountain, I.-M. A. del Mundo, E. M. Jacklin, J. R. Morrow, Org. Biomolec. Chem. 2009, 7, 3251–3257.CrossRefGoogle Scholar
  103. 103.
    C. Henoumont, L. Vander Elst, S. Laurent, R. Muller, J. Biol. Inorg. Chem. 2009, 14, 683–691.CrossRefPubMedGoogle Scholar
  104. 104.
    I. Bertini, C. Luchinat, G. Parigi, Concepts Magn. Reson. 2002, 14, 259–286.CrossRefGoogle Scholar
  105. 105.
    L. Banci, I. Bertini, K. L. Bren, M. A. Cremonini, H. B. Gray, C. Luchinat, P. Turano, J. Biol. Inorg. Chem. 1996, 1, 117–126.CrossRefGoogle Scholar
  106. 106.
    G. Otting, J. Biomolec. NMR 2008, 42, 1–9.CrossRefGoogle Scholar
  107. 107.
    S. L. Klakamp, W. D. Horrocks, Jr., J. Inorg. Biochem. 1992, 46, 193–205.CrossRefPubMedGoogle Scholar
  108. 108.
    S. L. Klakamp, W. D. Horrocks, Jr., J. Inorg. Biochem. 1991, 46, 175–192.CrossRefGoogle Scholar
  109. 109.
    R. A. Mathews, Ph.D. Thesis, University of Buffalo, State University of New York, 2008.Google Scholar
  110. 110.
    H.-K. Kim, J. Li, N. Nagraj, Y. Lu, Eur. J. Chem. 2008, 14, 8696–8703.CrossRefGoogle Scholar
  111. 111.
    C.-H. Huang, A. Parish, F. Samain, F. Garo, R. Haner, J. R. Morrow, Bioconjugate Chem. 2010, 21, 476–482.CrossRefGoogle Scholar
  112. 112.
    Y. Ye, H.-W. Lee, W. Yang, S. Shealy, J. J. Yang, J. Am. Chem. Soc. 2005, 127, 3743–3750.CrossRefPubMedGoogle Scholar
  113. 113.
    L. Huang, L. L. Chappell, O. Iranzo, B. F. Baker, J. R. Morrow, J. Biol. Inorg. Chem. 2000, 5, 85–92.PubMedGoogle Scholar
  114. 114.
    B. F. Baker, S. S. Lot, J. Kringel, S. Cheng-Flournoy, P. Villiet, H. M. Sasmor, A.M. Siwkowski, L. L. Chappell, J. R. Morrow, Nucl. Acid Res. 1999, 27, 1547–1551.CrossRefGoogle Scholar
  115. 115.
    D. Magda, R. A. Miller, J. L. Sessler, B. L. Iverson, J. Am. Chem. Soc. 1994, 116, 7439–7440.CrossRefGoogle Scholar
  116. 116.
    D. Magda, M. Wright, S. Crofts, A. Lin, J. L. Sessler, J. Am. Chem. Soc. 1997, 119, 6947–6948.CrossRefGoogle Scholar
  117. 117.
    J. Hall, D. Husken, U. Pieles, H. E. Moser, R. Haner, Chem Biol. 1994, 1, 185–190.CrossRefPubMedGoogle Scholar
  118. 118.
    J. R. Morrow, T. L. Amyes, J. P. Richard, Acc. Chem. Res. 2008, 41, 539–548CrossRefPubMedGoogle Scholar
  119. 119.
    K. Tanaka, M. Shionoya, Coord. Chem. Rev. 2007, 251, 2731–2742.CrossRefGoogle Scholar
  120. 120.
    H. Guido, C. K. Clever, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 6226–6236.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations